bartleby

Concept explainers

Question
Book Icon
Chapter 24, Problem 24.118EP

(a)

Interpretation Introduction

Interpretation: To indicate whether B vitamin niacin is involved in (1) glycolysis, (2) gluconeogenesis, (3) lactate fermentation, or (4) glycogenolysis as a cofactor.

Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.

Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.

In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to glucose 6phosphate.

In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to NAD+. This anaerobic reduction is called lactate fermentation.

Niacin (as NADH, NAD+) , thiamin (as TPP), riboflavin (as FAD),  pantothenic acid (as CoA), biotin, and vitamin B6 (as PLP) are the different B vitamins involved in the reactions associated with the metabolism of carbohydrates.

(b)

Interpretation Introduction

Interpretation: To indicate B vitamin biotin is involved in (1) glycolysis, (2) gluconeogenesis, (3) lactate fermentation, or (4) glycogenolysis as a cofactor.

Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.

Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.

In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to glucose 6phosphate.

In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to NAD+. This anaerobic reduction is called lactate fermentation.

Niacin (as NADH, NAD+) , thiamin (as TPP), riboflavin (as FAD),  pantothenic acid (as CoA), biotin, and vitamin B6 (as PLP) are the different B vitamins involved in the reactions associated with the metabolism of carbohydrates.

(c)

Interpretation Introduction

Interpretation: To indicate B vitamin folate is involved in (1) glycolysis, (2) gluconeogenesis, (3) lactate fermentation, or (4) glycogenolysis as a cofactor.

Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.

Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.

In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to glucose 6phosphate.

In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to NAD+. This anaerobic reduction is called lactate fermentation.

(d)

Interpretation Introduction

Interpretation: To indicate vitamin B12 is involved in (1) glycolysis, (2) gluconeogenesis, (3) lactate fermentation, or (4) glycogenolysis as a cofactor.

Concept introduction: Vitamins are defined as the micronutrients that are needed in a small amount for the proper functioning of the metabolic activities in the organisms.

Cofactors are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Cofactors cannot perform on their own alone.

In the glycolysis metabolic pathway, a glucose molecule breaks down into two pyruvate molecules. In gluconeogenesis process, glucose is produced from non-carbohydrate substances. Glycogenolysis is the metabolic pathway that converts glycogen to glucose 6phosphate.

In the absence of oxygen, pyruvate is converted to lactate by lactate dehydrogenase enzymes in the human body. In this reaction, NADH is oxidized to NAD+. This anaerobic reduction is called lactate fermentation.

Blurred answer

Chapter 24 Solutions

Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card

Ch. 24.2 - Prob. 6QQCh. 24.2 - Prob. 7QQCh. 24.3 - Prob. 1QQCh. 24.3 - Prob. 2QQCh. 24.3 - Prob. 3QQCh. 24.3 - Prob. 4QQCh. 24.3 - Accumulation of which of the following substances...Ch. 24.4 - Prob. 1QQCh. 24.4 - The net yield of ATP for the complete oxidation of...Ch. 24.4 - Prob. 3QQCh. 24.5 - Prob. 1QQCh. 24.5 - Prob. 2QQCh. 24.5 - Prob. 3QQCh. 24.6 - Prob. 1QQCh. 24.6 - Prob. 2QQCh. 24.6 - Prob. 3QQCh. 24.6 - Which of the following statements about ATP...Ch. 24.6 - Prob. 5QQCh. 24.7 - Prob. 1QQCh. 24.7 - Prob. 2QQCh. 24.8 - Prob. 1QQCh. 24.8 - Prob. 2QQCh. 24.8 - Prob. 3QQCh. 24.9 - Which of the following hormones promotes the...Ch. 24.9 - Which of the following pairs of hormones increases...Ch. 24.10 - Prob. 1QQCh. 24.10 - Prob. 2QQCh. 24.10 - Prob. 3QQCh. 24 - Where does carbohydrate digestion begin in the...Ch. 24 - Very little digestion of carbohydrates occurs in...Ch. 24 - Prob. 24.3EPCh. 24 - Prob. 24.4EPCh. 24 - Prob. 24.5EPCh. 24 - Prob. 24.6EPCh. 24 - Prob. 24.7EPCh. 24 - Prob. 24.8EPCh. 24 - Prob. 24.9EPCh. 24 - Prob. 24.10EPCh. 24 - Prob. 24.11EPCh. 24 - Prob. 24.12EPCh. 24 - Prob. 24.13EPCh. 24 - Prob. 24.14EPCh. 24 - Prob. 24.15EPCh. 24 - Prob. 24.16EPCh. 24 - Prob. 24.17EPCh. 24 - Prob. 24.18EPCh. 24 - Prob. 24.19EPCh. 24 - Prob. 24.20EPCh. 24 - Prob. 24.21EPCh. 24 - Prob. 24.22EPCh. 24 - Prob. 24.23EPCh. 24 - Prob. 24.24EPCh. 24 - Prob. 24.25EPCh. 24 - Prob. 24.26EPCh. 24 - Prob. 24.27EPCh. 24 - Prob. 24.28EPCh. 24 - Prob. 24.29EPCh. 24 - Prob. 24.30EPCh. 24 - Prob. 24.31EPCh. 24 - Prob. 24.32EPCh. 24 - Prob. 24.33EPCh. 24 - Prob. 24.34EPCh. 24 - Prob. 24.35EPCh. 24 - Prob. 24.36EPCh. 24 - Prob. 24.37EPCh. 24 - Prob. 24.38EPCh. 24 - Prob. 24.39EPCh. 24 - Prob. 24.40EPCh. 24 - Prob. 24.41EPCh. 24 - Prob. 24.42EPCh. 24 - Prob. 24.43EPCh. 24 - Prob. 24.44EPCh. 24 - Prob. 24.45EPCh. 24 - Prob. 24.46EPCh. 24 - Prob. 24.47EPCh. 24 - Prob. 24.48EPCh. 24 - Prob. 24.49EPCh. 24 - Prob. 24.50EPCh. 24 - Prob. 24.51EPCh. 24 - Prob. 24.52EPCh. 24 - Prob. 24.53EPCh. 24 - Prob. 24.54EPCh. 24 - Prob. 24.55EPCh. 24 - Prob. 24.56EPCh. 24 - Prob. 24.57EPCh. 24 - Prob. 24.58EPCh. 24 - Prob. 24.59EPCh. 24 - Prob. 24.60EPCh. 24 - Prob. 24.61EPCh. 24 - Prob. 24.62EPCh. 24 - Prob. 24.63EPCh. 24 - Prob. 24.64EPCh. 24 - Prob. 24.65EPCh. 24 - The liver, but not the brain or muscle cells, has...Ch. 24 - Prob. 24.67EPCh. 24 - Prob. 24.68EPCh. 24 - Prob. 24.69EPCh. 24 - Prob. 24.70EPCh. 24 - Prob. 24.71EPCh. 24 - Prob. 24.72EPCh. 24 - Prob. 24.73EPCh. 24 - Prob. 24.74EPCh. 24 - Prob. 24.75EPCh. 24 - Prob. 24.76EPCh. 24 - Prob. 24.77EPCh. 24 - Prob. 24.78EPCh. 24 - Prob. 24.79EPCh. 24 - Prob. 24.80EPCh. 24 - Prob. 24.81EPCh. 24 - Prob. 24.82EPCh. 24 - Prob. 24.83EPCh. 24 - Prob. 24.84EPCh. 24 - Prob. 24.85EPCh. 24 - Prob. 24.86EPCh. 24 - Prob. 24.87EPCh. 24 - Prob. 24.88EPCh. 24 - Prob. 24.89EPCh. 24 - Prob. 24.90EPCh. 24 - Prob. 24.91EPCh. 24 - Prob. 24.92EPCh. 24 - Prob. 24.93EPCh. 24 - Prob. 24.94EPCh. 24 - Prob. 24.95EPCh. 24 - Prob. 24.96EPCh. 24 - Prob. 24.97EPCh. 24 - Prob. 24.98EPCh. 24 - Prob. 24.99EPCh. 24 - Prob. 24.100EPCh. 24 - Prob. 24.101EPCh. 24 - Prob. 24.102EPCh. 24 - Prob. 24.103EPCh. 24 - Prob. 24.104EPCh. 24 - Prob. 24.105EPCh. 24 - Prob. 24.106EPCh. 24 - Prob. 24.107EPCh. 24 - Prob. 24.108EPCh. 24 - Prob. 24.109EPCh. 24 - Prob. 24.110EPCh. 24 - Prob. 24.111EPCh. 24 - Prob. 24.112EPCh. 24 - Prob. 24.113EPCh. 24 - Prob. 24.114EPCh. 24 - Prob. 24.115EPCh. 24 - Compare the biological functions of glucagon and...Ch. 24 - Prob. 24.117EPCh. 24 - Prob. 24.118EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning