COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 82QAP
To determine
The angular limit of resolution due to diffraction of 540 nm of light passing through Hubble space telescope having objective diameter of 2.4 meter
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
•48 A high-powered laser beam (A = 600 nm) with a beam diam-
eter of 12 cm is aimed at the Moon, 3.8 x 10° km distant. The beam
spreads only because of diffraction. The angular location of the
edge of the central diffraction disk (see Eq. 36-12) is given by
1.22A
sin 0
where d is the diameter of the beam aperture. What is the diameter
of the central diffraction disk on the Moon's surface?
•4 In Fig. 35-32a, a beam of light in material 1 is incident on a
boundary at an angle of 30°. The extent to which the light is ben
due to refraction depends, in part, on the index of refraction n, o
material 2. Figure 35-32b gives the angle of refraction Oz versus n
for a range of possible n2 values, from n, = 1.30 to n, = 1.90. Wha
is the speed of light in material 1?
в,
40°
300!
30°
в,
20°
по
(a)
(b)
•10 GO
Manufacturers of wire (and other objects of small
dimension) sometimes use a laser to continually monitor the
thickness of the product. The wire intercepts the laser beam, pro-
ducing a diffraction pattern like that of a single slit of the same
width as the wire diameter (Fig. 36-37). Suppose a helium-neon
laser, of wavelength 632.8 nm, illuminates a wire, and the diffrac-
tion pattern appears on a screen at distance L = 2.60 m. If the
desired wire diameter is 1.37 mm, what is the observed distance
between the two tenth-order minima (one on each side of the
central maximum)?
Wire
He-Ne
laser
L
Figure 36-37 Problem 10.
Wire-making
machine
Chapter 23 Solutions
COLLEGE PHYSICS
Ch. 23 - Prob. 1QAPCh. 23 - Prob. 2QAPCh. 23 - Prob. 3QAPCh. 23 - Prob. 4QAPCh. 23 - Prob. 5QAPCh. 23 - Prob. 6QAPCh. 23 - Prob. 7QAPCh. 23 - Prob. 8QAPCh. 23 - Prob. 9QAPCh. 23 - Prob. 10QAP
Ch. 23 - Prob. 11QAPCh. 23 - Prob. 12QAPCh. 23 - Prob. 13QAPCh. 23 - Prob. 14QAPCh. 23 - Prob. 15QAPCh. 23 - Prob. 16QAPCh. 23 - Prob. 17QAPCh. 23 - Prob. 18QAPCh. 23 - Prob. 19QAPCh. 23 - Prob. 20QAPCh. 23 - Prob. 21QAPCh. 23 - Prob. 22QAPCh. 23 - Prob. 23QAPCh. 23 - Prob. 24QAPCh. 23 - Prob. 25QAPCh. 23 - Prob. 26QAPCh. 23 - Prob. 27QAPCh. 23 - Prob. 28QAPCh. 23 - Prob. 29QAPCh. 23 - Prob. 30QAPCh. 23 - Prob. 31QAPCh. 23 - Prob. 32QAPCh. 23 - Prob. 33QAPCh. 23 - Prob. 34QAPCh. 23 - Prob. 35QAPCh. 23 - Prob. 36QAPCh. 23 - Prob. 37QAPCh. 23 - Prob. 38QAPCh. 23 - Prob. 39QAPCh. 23 - Prob. 40QAPCh. 23 - Prob. 41QAPCh. 23 - Prob. 42QAPCh. 23 - Prob. 43QAPCh. 23 - Prob. 44QAPCh. 23 - Prob. 45QAPCh. 23 - Prob. 46QAPCh. 23 - Prob. 47QAPCh. 23 - Prob. 48QAPCh. 23 - Prob. 49QAPCh. 23 - Prob. 50QAPCh. 23 - Prob. 51QAPCh. 23 - Prob. 52QAPCh. 23 - Prob. 53QAPCh. 23 - Prob. 54QAPCh. 23 - Prob. 55QAPCh. 23 - Prob. 56QAPCh. 23 - Prob. 57QAPCh. 23 - Prob. 58QAPCh. 23 - Prob. 59QAPCh. 23 - Prob. 60QAPCh. 23 - Prob. 61QAPCh. 23 - Prob. 62QAPCh. 23 - Prob. 63QAPCh. 23 - Prob. 64QAPCh. 23 - Prob. 65QAPCh. 23 - Prob. 66QAPCh. 23 - Prob. 67QAPCh. 23 - Prob. 68QAPCh. 23 - Prob. 69QAPCh. 23 - Prob. 70QAPCh. 23 - Prob. 71QAPCh. 23 - Prob. 72QAPCh. 23 - Prob. 73QAPCh. 23 - Prob. 74QAPCh. 23 - Prob. 75QAPCh. 23 - Prob. 76QAPCh. 23 - Prob. 77QAPCh. 23 - Prob. 78QAPCh. 23 - Prob. 79QAPCh. 23 - Prob. 80QAPCh. 23 - Prob. 81QAPCh. 23 - Prob. 82QAPCh. 23 - Prob. 83QAPCh. 23 - Prob. 84QAPCh. 23 - Prob. 85QAPCh. 23 - Prob. 86QAPCh. 23 - Prob. 87QAPCh. 23 - Prob. 88QAPCh. 23 - Prob. 89QAPCh. 23 - Prob. 90QAPCh. 23 - Prob. 91QAPCh. 23 - Prob. 92QAPCh. 23 - Prob. 93QAPCh. 23 - Prob. 94QAPCh. 23 - Prob. 95QAPCh. 23 - Prob. 96QAPCh. 23 - Prob. 97QAPCh. 23 - Prob. 98QAPCh. 23 - Prob. 99QAPCh. 23 - Prob. 100QAPCh. 23 - Prob. 101QAPCh. 23 - Prob. 102QAPCh. 23 - Prob. 103QAPCh. 23 - Prob. 104QAPCh. 23 - Prob. 105QAPCh. 23 - Prob. 106QAPCh. 23 - Prob. 107QAPCh. 23 - Prob. 108QAPCh. 23 - Prob. 109QAPCh. 23 - Prob. 110QAPCh. 23 - Prob. 111QAPCh. 23 - Prob. 112QAPCh. 23 - Prob. 113QAPCh. 23 - Prob. 114QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the Moon. (a) If this is done with the Mount Wilson telescope, producing a 2.54-m-diameter beam of 633-nm light, what is the minimum angular spread of the beam? (b) Neglecting atmospheric effects, what is the size of the spot this beam would make on the Moon, assuming a lunar distance of 3.84108 m?arrow_forwardAssuming the angular resolution found for the Hubble Telescope in Example 27.5, what is the smallest detail that could be observed on the Moon?arrow_forward• A beam of light strikes the plane surface of silicate flint glass at an angle of incidence of 45°. The index of refraction of the glass varies with wavelength (see Figure 31-59). How much smaller is the angle of refraction for violet light of wavelength 400 nm than the angle of refraction for red light of wavelength 700 nm? 49 11 1.7 Silicate flint glass 1.6 Borate flint glass Quartz Silicate crown glass 1.5 Violet Red 1.4 400 500 600 700 2, nmarrow_forward
- •8 In Fig. 35-33, two light pulses are sent through layers of plastic Pulse п п with thicknesses of either L or 2L as shown and indexes of refraction Pulse n = 1.55, nz = 1.70, nz = 1.60, n4 = i 1.45, ng = 1.59, ng = 1.65, and n, = 1.50. (a) Which pulse travels through the plastic in less time? (b) What multiple of Lic gives the difference in the traversal times of the pulses? %3D Figure 35-33 Problem 8.arrow_forward• Explain how the aperture geometry relates to the diffraction pattern.• Predict how changing the wavelength or aperture size affects the diffraction pattern.arrow_forwardI need help solving this problem. Please explain in detail and make sure the solution is fully viewable.arrow_forward
- •1 In Fig. 35-31, a light wave along ray r, reflects once from a mirror and a light wave along ray r, reflects twice from that same mirror and once from a tiny mirror at distance L from the bigger mirror. (Neglect the slight tilt Figure 35-31 Problems 1 and 2. of the rays.) The waves have wave- length 620 nm and are initially in phase. (a) What is the smallest value of L that puts the final light waves exactly out of phase? (b) With the tiny mirror initially at that value of L, how far must it be moved away from the bigger mirror to again put the final waves out of phase?arrow_forward•49 Figure 33-49 shows light re- flecting from two perpendicular reflecting surfaces A and B. Find the angle between the incoming ray i and the outgoing ray r'. B.arrow_forward213] Treat each of your eyes as a circular aperture of diameter 3.5 mm. Light of wavelength 650 nm is used to view two point-sources that are 894 m distant from you. How far apart must these two point-sources be if they are to be just resolved by your eye? Assume that the resolution is .224. = diffraction limited and use Rayleigh criterion. Sin = 1.22 1) Sine₁ = 1.22 D Sine Sing 11 2=1 1 = (1.22) (3.5mm) Sin (894) = 1.22D Sine, 4.27mm 0.105m 40.9mm 2arrow_forward
- 4. As a light ray travels from vacuum (n = 1) to a medium where refractive index gradually increases, (n >1 but not uniform, which of the following properties decreases gradually? O Frequency • Wave trough O Wave crest O Wavelengtharrow_forward400 •44 An object is placed against the center of a thin lens and then moved away from it along the central axis as the image distance i is measured. Figure 34-41 gives i versus object distance p out to p, = 60 cm. What is the image distance when p= 100 -400 p (cm) Figure 34-41 Problem 44. cm? (un)!arrow_forwardNonearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY