
Concept explainers
(A)
The

Answer to Problem 36QAP
The speed of light in ice is
Explanation of Solution
Given:
Speed of light in vacuum
Refractive Index of ice
Let the speed of light in ice be
Formula used:
Refractive Index of ice
Here, all alphabets are in their usual meanings.
Calculation:
Using the above formula,
Conclusion:
Hence, the speed of light in ice is
(B)
The speed of light in acetone.

Answer to Problem 36QAP
The speed of light in acetone is
Explanation of Solution
Given:
Speed of light in vacuum
Refractive Index of acetone
Let the speed of light in acetone be
Formula used:
Refractive Index of acetone
Here, all alphabets are in their usual meanings.
Calculation:
Using the above formula,
Conclusion:
Hence, the speed of light in acetone is
(C)
The speed of light in Plexiglas.

Answer to Problem 36QAP
The speed of light in Plexiglas is
Explanation of Solution
Given:
Speed of light in vacuum
Refractive Index of Plexiglas
Let the speed of light in Plexiglas be
Formula used:
Refractive Index of Plexiglas
Here, all alphabets are in their usual meanings.
Calculation:
Using the above formula,
Conclusion:
Hence, the speed of light in Plexiglas is
(d)
The speed of light in Sodium Chloride.

Answer to Problem 36QAP
The speed of light in Sodium Chloride is
Explanation of Solution
Given:
Speed of light in vacuum
Refractive Index of Sodium Chloride
Let the speed of light in Sodium Chloride be
Formula used:
Refractive Index of Sodium Chloride
Here, all alphabets are in their usual meanings.
Calculation:
Using the above formula,
Conclusion:
Hence, the speed of light in Sodium Chloride is
(E)
The speed of light in Sapphire.

Answer to Problem 36QAP
The speed of light in Sapphire is
Explanation of Solution
Given:
Speed of light in vacuum
Refractive Index of Sapphire
Let the speed of light in Sapphire be
Formula used:
Refractive Index of Sapphire
Here, all alphabets are in their usual meanings.
Calculation:
Using the above formula,
Conclusion:
Hence, the speed of light in Sapphire is
(F)
The speed of light in diamond.

Answer to Problem 36QAP
The speed of light in diamond is
Explanation of Solution
Given:
Speed of light in vacuum
Refractive Index of diamond
Let the speed of light in diamond be
Formula used:
Refractive Index of diamond
Here, all alphabets are in their usual meanings.
Calculation:
Using the above formula,
Conclusion:
Hence, the speed of light in diamond is
(G)
The speed of light in water.

Answer to Problem 36QAP
The speed of light in water is
Explanation of Solution
Given:
Speed of light in vacuum
Refractive Index of water
Let the speed of light in water be
Formula used:
Refractive Index of water
Here, all alphabets are in their usual meanings.
Calculation:
Using the above formula,
Conclusion:
Hence, the speed of light in water is
(H)
The speed of light in crow glass.

Answer to Problem 36QAP
The speed of light in crow glass is
Explanation of Solution
Given:
Speed of light in vacuum
Refractive Index of crow glass
Let the speed of light in crow glass be
Formula used:
Refractive Index of crow glass
Here, all alphabets are in their usual meanings.
Calculation:
Using the above formula,
Conclusion:
Hence, the speed of light in crow glass is
Want to see more full solutions like this?
Chapter 23 Solutions
COLLEGE PHYSICS
- A uniform horizontal disk of radius 5.50 m turns without friction at w = 2.55 rev/s on a vertical axis through its center, as in the figure below. A feedback mechanism senses the angular speed of the disk, and a drive motor at A ensures that the angular speed remain constant while a m = 1.20 kg block on top of the disk slides outward in a radial slot. The block starts at the center of the disk at time t = 0 and moves outward with constant speed v = 1.25 cm/s relative to the disk until it reaches the edge at t = 360 s. The sliding block experiences no friction. Its motion is constrained to have constant radial speed by a brake at B, producing tension in a light string tied to the block. (a) Find the torque as a function of time that the drive motor must provide while the block is sliding. Hint: The torque is given by t = 2mrvw. t N.m (b) Find the value of this torque at t = 360 s, just before the sliding block finishes its motion. N.m (c) Find the power which the drive motor must…arrow_forward(a) A planet is in an elliptical orbit around a distant star. At its closest approach, the planet is 0.670 AU from the star and has a speed of 54.0 km/s. When the planet is at its farthest distance from the star of 36.0 AU, what is its speed (in km/s)? (1 AU is the average distance from the Earth to the Sun and is equal to 1.496 × 1011 m. You may assume that other planets and smaller objects in the star system exert negligible forces on the planet.) km/s (b) What If? A comet is in a highly elliptical orbit around the same star. The comet's greatest distance from the star is 25,700 times larger than its closest distance to the star. The comet's speed at its greatest distance is 2.40 x 10-2 km/s. What is the speed (in km/s) of the comet at its closest approach? km/sarrow_forwardYou are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a new game of skill. A thin rod of mass M = 0.505 kg and length = 2.70 m hangs from a friction-free pivot at its upper end as shown in the figure. Pivot Velcro M Incoming Velcro-covered ball m The front surface of the rod is covered with Velcro. You are to throw a Velcro-covered ball of mass m = 1.25 kg at the rod in an attempt to make it swing backward and rotate all the way across the top. The ball must stick to the rod at all times after striking it. If you cause the rod to rotate over the top position (that is, rotate 180° opposite of its starting position), you win a stuffed animal. Your friend volunteers to try his luck. He feels that the most torque would be applied to the rod by striking it at its lowest end. While he prepares to aim at the lowest point on the rod, you calculate how fast he must throw the ball to win the stuffed animal with this…arrow_forward
- 56 is not the correct answer!arrow_forward81 SSM Figure 29-84 shows a cross section of an infinite conducting sheet carrying a current per unit x-length of 2; the current emerges perpendicularly out of the page. (a) Use the Biot-Savart law and symmetry to show that for all points B •P x B P'. Figure 29-84 Problem 81. P above the sheet and all points P' below it, the magnetic field B is parallel to the sheet and directed as shown. (b) Use Ampere's law to prove that B = ½µλ at all points P and P'.arrow_forward(λvacuum =640nm) red light (λ vacuum = 640 nm) and green light perpendicularly on a soap film (n=1.31) A mixture of (a vacuum = 512 nm) shines that has air on both side. What is the minimum nonzero thickness of the film, so that destructive interference to look red in reflected light? nm Causes itarrow_forward
- Suppose the inteference pattern shown in the figure below is produced by monochromatic light passing through a diffraction grating, that has 260 lines/mm, and onto a screen 1.40m away. What is the wavelength of light if the distance between the dashed lines is 180cm? nmarrow_forwardHow many (whole) dark fringes will produced on on an infinitely large screen if red light (2)=700 nm) is incident on two slits that are 20.0 μm apart?arrow_forwardCan someone help me with this physics 2 problem thank you.arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning





