COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 23, Problem 65QAP
To determine
What are the minimum and the next three thicknesses of the oil that will strongly reflect blue light having a wavelength in air of 518 nm at normal incidence?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
•4 In Fig. 35-32a, a beam of light in material 1 is incident on a
boundary at an angle of 30°. The extent to which the light is ben
due to refraction depends, in part, on the index of refraction n, o
material 2. Figure 35-32b gives the angle of refraction Oz versus n
for a range of possible n2 values, from n, = 1.30 to n, = 1.90. Wha
is the speed of light in material 1?
в,
40°
300!
30°
в,
20°
по
(a)
(b)
•34 G In Fig. 33-41, a beam of unpolarized
light, with intensity 43 W/m?, is sent into a
system of two polarizing sheets with
polarizing directions at angles 6,= 70° and
02 = 90° to the y axis. What is the intensity of
-x-
Ө.
the light transmitted by the system?
•10 GO
Manufacturers of wire (and other objects of small
dimension) sometimes use a laser to continually monitor the
thickness of the product. The wire intercepts the laser beam, pro-
ducing a diffraction pattern like that of a single slit of the same
width as the wire diameter (Fig. 36-37). Suppose a helium-neon
laser, of wavelength 632.8 nm, illuminates a wire, and the diffrac-
tion pattern appears on a screen at distance L = 2.60 m. If the
desired wire diameter is 1.37 mm, what is the observed distance
between the two tenth-order minima (one on each side of the
central maximum)?
Wire
He-Ne
laser
L
Figure 36-37 Problem 10.
Wire-making
machine
Chapter 23 Solutions
COLLEGE PHYSICS
Ch. 23 - Prob. 1QAPCh. 23 - Prob. 2QAPCh. 23 - Prob. 3QAPCh. 23 - Prob. 4QAPCh. 23 - Prob. 5QAPCh. 23 - Prob. 6QAPCh. 23 - Prob. 7QAPCh. 23 - Prob. 8QAPCh. 23 - Prob. 9QAPCh. 23 - Prob. 10QAP
Ch. 23 - Prob. 11QAPCh. 23 - Prob. 12QAPCh. 23 - Prob. 13QAPCh. 23 - Prob. 14QAPCh. 23 - Prob. 15QAPCh. 23 - Prob. 16QAPCh. 23 - Prob. 17QAPCh. 23 - Prob. 18QAPCh. 23 - Prob. 19QAPCh. 23 - Prob. 20QAPCh. 23 - Prob. 21QAPCh. 23 - Prob. 22QAPCh. 23 - Prob. 23QAPCh. 23 - Prob. 24QAPCh. 23 - Prob. 25QAPCh. 23 - Prob. 26QAPCh. 23 - Prob. 27QAPCh. 23 - Prob. 28QAPCh. 23 - Prob. 29QAPCh. 23 - Prob. 30QAPCh. 23 - Prob. 31QAPCh. 23 - Prob. 32QAPCh. 23 - Prob. 33QAPCh. 23 - Prob. 34QAPCh. 23 - Prob. 35QAPCh. 23 - Prob. 36QAPCh. 23 - Prob. 37QAPCh. 23 - Prob. 38QAPCh. 23 - Prob. 39QAPCh. 23 - Prob. 40QAPCh. 23 - Prob. 41QAPCh. 23 - Prob. 42QAPCh. 23 - Prob. 43QAPCh. 23 - Prob. 44QAPCh. 23 - Prob. 45QAPCh. 23 - Prob. 46QAPCh. 23 - Prob. 47QAPCh. 23 - Prob. 48QAPCh. 23 - Prob. 49QAPCh. 23 - Prob. 50QAPCh. 23 - Prob. 51QAPCh. 23 - Prob. 52QAPCh. 23 - Prob. 53QAPCh. 23 - Prob. 54QAPCh. 23 - Prob. 55QAPCh. 23 - Prob. 56QAPCh. 23 - Prob. 57QAPCh. 23 - Prob. 58QAPCh. 23 - Prob. 59QAPCh. 23 - Prob. 60QAPCh. 23 - Prob. 61QAPCh. 23 - Prob. 62QAPCh. 23 - Prob. 63QAPCh. 23 - Prob. 64QAPCh. 23 - Prob. 65QAPCh. 23 - Prob. 66QAPCh. 23 - Prob. 67QAPCh. 23 - Prob. 68QAPCh. 23 - Prob. 69QAPCh. 23 - Prob. 70QAPCh. 23 - Prob. 71QAPCh. 23 - Prob. 72QAPCh. 23 - Prob. 73QAPCh. 23 - Prob. 74QAPCh. 23 - Prob. 75QAPCh. 23 - Prob. 76QAPCh. 23 - Prob. 77QAPCh. 23 - Prob. 78QAPCh. 23 - Prob. 79QAPCh. 23 - Prob. 80QAPCh. 23 - Prob. 81QAPCh. 23 - Prob. 82QAPCh. 23 - Prob. 83QAPCh. 23 - Prob. 84QAPCh. 23 - Prob. 85QAPCh. 23 - Prob. 86QAPCh. 23 - Prob. 87QAPCh. 23 - Prob. 88QAPCh. 23 - Prob. 89QAPCh. 23 - Prob. 90QAPCh. 23 - Prob. 91QAPCh. 23 - Prob. 92QAPCh. 23 - Prob. 93QAPCh. 23 - Prob. 94QAPCh. 23 - Prob. 95QAPCh. 23 - Prob. 96QAPCh. 23 - Prob. 97QAPCh. 23 - Prob. 98QAPCh. 23 - Prob. 99QAPCh. 23 - Prob. 100QAPCh. 23 - Prob. 101QAPCh. 23 - Prob. 102QAPCh. 23 - Prob. 103QAPCh. 23 - Prob. 104QAPCh. 23 - Prob. 105QAPCh. 23 - Prob. 106QAPCh. 23 - Prob. 107QAPCh. 23 - Prob. 108QAPCh. 23 - Prob. 109QAPCh. 23 - Prob. 110QAPCh. 23 - Prob. 111QAPCh. 23 - Prob. 112QAPCh. 23 - Prob. 113QAPCh. 23 - Prob. 114QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are told not to shoot until you see the whites of their eyes. If the eyes are separated by 6.5 cm and the diameter of your pupil is 5.0 mm, at what distance can you resolve the two eyes using light of wavelength 555 nm?arrow_forwardProve that, if I is the intensity of light transmitted by two polarizing filters with axes at an angle and I is the intensity when the axes are at an angle 90.0, then I+I=I0, the original intensity. (Hint: Use the trigonometric identities cos(90.0)=sin and cos2+sin2=1 .)arrow_forwardCan a sound wave in air be polarized? Explain.arrow_forward
- Figure 27.34 shows two 7.50-cm-long glass slides illuminated by pure 589-nm wavelength light incident perpendicularly. The top slide touches the bottom slide at one end and rests on some debris at the other end, forming a wedge of air. How thick is the debris, if the dark bands are 1.00 mm apart?arrow_forwardAn American standard analog television picture (non-HDTV), also known as NTSC, is composed of approximately 485 visible horizontal lines of varying light intensity. Assume your ability to resolve the lines is limited only by the Rayleigh criterion, the pupils of your eyes are 5.00 min in diameter, and the average wavelength of the light coming from the screen is 550. nm. Calculate the ratio of the minimum viewing distance to the vertical dimension of the picture such that you will not be able to resolve the lines.arrow_forwardShow that if you have three polarizing filters, with the second at an angle of 45° to the first and the third at an angle of 90.0° to the first, the intensity of light passed by the first will be reduced to 25.0% of its value. (This is in contrast to having only the first and third, which reduces the intensity to zero, so that placing the second between them increases the intensity of the transmitted light.)arrow_forward
- Many cells are transparent anti colorless. Structures of great interest in biology and medicine can be practically invisible to ordinary microscopy. To indicate the size and shape of cell structures, an interference micro-scope reveals a difference in index of refraction as a shift in interference fringes. The idea is exemplified in the following problem. An air wedge is formed between two glass plates in contact along one edge and slightly separated at the opposite edge as in Figure P37.37. When the plates are illuminated with monochromatic light from above, the reflected light has 85 dark fringes. Calculate the number of dark fringes that appear if water (n = 1.33) replaces the air between the plates.arrow_forward•48 A high-powered laser beam (A = 600 nm) with a beam diam- eter of 12 cm is aimed at the Moon, 3.8 x 10° km distant. The beam spreads only because of diffraction. The angular location of the edge of the central diffraction disk (see Eq. 36-12) is given by 1.22A sin 0 where d is the diameter of the beam aperture. What is the diameter of the central diffraction disk on the Moon's surface?arrow_forward•8 In Fig. 35-33, two light pulses are sent through layers of plastic Pulse п п with thicknesses of either L or 2L as shown and indexes of refraction Pulse n = 1.55, nz = 1.70, nz = 1.60, n4 = i 1.45, ng = 1.59, ng = 1.65, and n, = 1.50. (a) Which pulse travels through the plastic in less time? (b) What multiple of Lic gives the difference in the traversal times of the pulses? %3D Figure 35-33 Problem 8.arrow_forward
- • A beam of light strikes the plane surface of silicate flint glass at an angle of incidence of 45°. The index of refraction of the glass varies with wavelength (see Figure 31-59). How much smaller is the angle of refraction for violet light of wavelength 400 nm than the angle of refraction for red light of wavelength 700 nm? 49 11 1.7 Silicate flint glass 1.6 Borate flint glass Quartz Silicate crown glass 1.5 Violet Red 1.4 400 500 600 700 2, nmarrow_forward•1 In Fig. 35-31, a light wave along ray r, reflects once from a mirror and a light wave along ray r, reflects twice from that same mirror and once from a tiny mirror at distance L from the bigger mirror. (Neglect the slight tilt Figure 35-31 Problems 1 and 2. of the rays.) The waves have wave- length 620 nm and are initially in phase. (a) What is the smallest value of L that puts the final light waves exactly out of phase? (b) With the tiny mirror initially at that value of L, how far must it be moved away from the bigger mirror to again put the final waves out of phase?arrow_forward83 O Two light rays, initially in phase and with a wavelength of 500 nm, go through different paths by T reflecting from the various mirrors 4 shown in Fig. 35-49. (Such a reflection does not itself produce a phase shift.) (a) What least value of distance d will put the rays exactly out of phase when they emerge from the region? (Ignore the slight tilt of the path for ray 2.) (b) Repeat the question as- suming that the entire apparatus is immersed in a protein solution with Ray 1 Ray 2 Figure 35-49 Problem 83. an index of refraction of 1.38.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY