COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 69QAP
To determine
The wavelength of the hopping laser.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
•10 GO
Manufacturers of wire (and other objects of small
dimension) sometimes use a laser to continually monitor the
thickness of the product. The wire intercepts the laser beam, pro-
ducing a diffraction pattern like that of a single slit of the same
width as the wire diameter (Fig. 36-37). Suppose a helium-neon
laser, of wavelength 632.8 nm, illuminates a wire, and the diffrac-
tion pattern appears on a screen at distance L = 2.60 m. If the
desired wire diameter is 1.37 mm, what is the observed distance
between the two tenth-order minima (one on each side of the
central maximum)?
Wire
He-Ne
laser
L
Figure 36-37 Problem 10.
Wire-making
machine
•7 Light of wavelength 633 nm is incident on a narrow slit. The
angle between the first diffraction minimum on one side of the
central maximum and the first minimum on the other side is 1.20⁰.
What is the width of the slit?
Two sources S, and S, emitting light of wavelength
- 2
ст араrt.
600 nm are placed a distance 1.0 x 10
detector can be moved on the line S,P which is
perpendicular to S,S,. (a) What would be the minimum
and maximum path difference at the detector as it is
moved along the line S,P? (b) Locate the position of the
farthest minimum detected.
A
2•
Chapter 23 Solutions
COLLEGE PHYSICS
Ch. 23 - Prob. 1QAPCh. 23 - Prob. 2QAPCh. 23 - Prob. 3QAPCh. 23 - Prob. 4QAPCh. 23 - Prob. 5QAPCh. 23 - Prob. 6QAPCh. 23 - Prob. 7QAPCh. 23 - Prob. 8QAPCh. 23 - Prob. 9QAPCh. 23 - Prob. 10QAP
Ch. 23 - Prob. 11QAPCh. 23 - Prob. 12QAPCh. 23 - Prob. 13QAPCh. 23 - Prob. 14QAPCh. 23 - Prob. 15QAPCh. 23 - Prob. 16QAPCh. 23 - Prob. 17QAPCh. 23 - Prob. 18QAPCh. 23 - Prob. 19QAPCh. 23 - Prob. 20QAPCh. 23 - Prob. 21QAPCh. 23 - Prob. 22QAPCh. 23 - Prob. 23QAPCh. 23 - Prob. 24QAPCh. 23 - Prob. 25QAPCh. 23 - Prob. 26QAPCh. 23 - Prob. 27QAPCh. 23 - Prob. 28QAPCh. 23 - Prob. 29QAPCh. 23 - Prob. 30QAPCh. 23 - Prob. 31QAPCh. 23 - Prob. 32QAPCh. 23 - Prob. 33QAPCh. 23 - Prob. 34QAPCh. 23 - Prob. 35QAPCh. 23 - Prob. 36QAPCh. 23 - Prob. 37QAPCh. 23 - Prob. 38QAPCh. 23 - Prob. 39QAPCh. 23 - Prob. 40QAPCh. 23 - Prob. 41QAPCh. 23 - Prob. 42QAPCh. 23 - Prob. 43QAPCh. 23 - Prob. 44QAPCh. 23 - Prob. 45QAPCh. 23 - Prob. 46QAPCh. 23 - Prob. 47QAPCh. 23 - Prob. 48QAPCh. 23 - Prob. 49QAPCh. 23 - Prob. 50QAPCh. 23 - Prob. 51QAPCh. 23 - Prob. 52QAPCh. 23 - Prob. 53QAPCh. 23 - Prob. 54QAPCh. 23 - Prob. 55QAPCh. 23 - Prob. 56QAPCh. 23 - Prob. 57QAPCh. 23 - Prob. 58QAPCh. 23 - Prob. 59QAPCh. 23 - Prob. 60QAPCh. 23 - Prob. 61QAPCh. 23 - Prob. 62QAPCh. 23 - Prob. 63QAPCh. 23 - Prob. 64QAPCh. 23 - Prob. 65QAPCh. 23 - Prob. 66QAPCh. 23 - Prob. 67QAPCh. 23 - Prob. 68QAPCh. 23 - Prob. 69QAPCh. 23 - Prob. 70QAPCh. 23 - Prob. 71QAPCh. 23 - Prob. 72QAPCh. 23 - Prob. 73QAPCh. 23 - Prob. 74QAPCh. 23 - Prob. 75QAPCh. 23 - Prob. 76QAPCh. 23 - Prob. 77QAPCh. 23 - Prob. 78QAPCh. 23 - Prob. 79QAPCh. 23 - Prob. 80QAPCh. 23 - Prob. 81QAPCh. 23 - Prob. 82QAPCh. 23 - Prob. 83QAPCh. 23 - Prob. 84QAPCh. 23 - Prob. 85QAPCh. 23 - Prob. 86QAPCh. 23 - Prob. 87QAPCh. 23 - Prob. 88QAPCh. 23 - Prob. 89QAPCh. 23 - Prob. 90QAPCh. 23 - Prob. 91QAPCh. 23 - Prob. 92QAPCh. 23 - Prob. 93QAPCh. 23 - Prob. 94QAPCh. 23 - Prob. 95QAPCh. 23 - Prob. 96QAPCh. 23 - Prob. 97QAPCh. 23 - Prob. 98QAPCh. 23 - Prob. 99QAPCh. 23 - Prob. 100QAPCh. 23 - Prob. 101QAPCh. 23 - Prob. 102QAPCh. 23 - Prob. 103QAPCh. 23 - Prob. 104QAPCh. 23 - Prob. 105QAPCh. 23 - Prob. 106QAPCh. 23 - Prob. 107QAPCh. 23 - Prob. 108QAPCh. 23 - Prob. 109QAPCh. 23 - Prob. 110QAPCh. 23 - Prob. 111QAPCh. 23 - Prob. 112QAPCh. 23 - Prob. 113QAPCh. 23 - Prob. 114QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- •48 A high-powered laser beam (A = 600 nm) with a beam diam- eter of 12 cm is aimed at the Moon, 3.8 x 10° km distant. The beam spreads only because of diffraction. The angular location of the edge of the central diffraction disk (see Eq. 36-12) is given by 1.22A sin 0 where d is the diameter of the beam aperture. What is the diameter of the central diffraction disk on the Moon's surface?arrow_forward•1 In Fig. 35-31, a light wave along ray r, reflects once from a mirror and a light wave along ray r, reflects twice from that same mirror and once from a tiny mirror at distance L from the bigger mirror. (Neglect the slight tilt Figure 35-31 Problems 1 and 2. of the rays.) The waves have wave- length 620 nm and are initially in phase. (a) What is the smallest value of L that puts the final light waves exactly out of phase? (b) With the tiny mirror initially at that value of L, how far must it be moved away from the bigger mirror to again put the final waves out of phase?arrow_forward. A plane diffraction grating in the first order shows an angle of minimum deviation of 20• at the mercury blue line of wavelength 4358 Å. Calculate the number of lines per centimeter.arrow_forward
- Two narrow slits are illuminated by a laser with a wavelength of 502 nm. The interference pattern on a screen located x = 4.80 m away shows that the second-order bright fringe is located y = 8.90 cm away from the central bright fringe. Calculate the distance between the two slits. 5.42x10-³ cm Computer's answer now shown above. You are correct. Previous Tries Your receipt no. is 158-5046 > The screen is now moved 1.5 m further away. What is the new distance between the central and the second-order bright fringe? 6.11E-2 m Either you perform similar calculations as for the previous problem, or you can use the fact that the ratio of fringe separation to screen-distance stays constant. Submit Answer Incorrect. Tries 1/6 Previous Triesarrow_forwardCalculate the wavelength of light that has its third minimum at an angle of 30.0º when falling on double slits separated by 2.56 μm. Give your answer in nm.arrow_forwardWhen two sine waves are overlay • Where the two waves can be represented by the two equations : E2 = E,Sin (kx – wt) and E, = E,Sin (kx – wt – 8) %3D Prove that the net strength of the resulting interference wave is four times the optical intensity of one of the two waves when constructive interference occurs and is zero when there is destructive interference.arrow_forward
- 73) In a Young's light doube slit experiment, beam through the mono chrom a tic slits shines The ce ater - to a center distance drs tane between befween the the slit is Imm, the and s creen and the slits ū 5m (A the se para tion be tween tirst and the 2nd bright fring es wave length of the the is O -25 cm. W hat the light beam ? Cum)arrow_forwardMY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Young's double slit experiment is one of the quintessential experiments in physics. The availability of low cost lasers in recent years allows us to perform the double slit experiment rather easily in class. Your professor shines a green laser (562 nm) on a double slit with a separation of 0.111 mm. The diffraction pattern shines on the classroom wall 3.0 m away. Calculate the fringe separation between the fifth order and central fringe. 0.015 What is the relationship between slit separation, wavelength, and fringe separation? m Additional Materials O Readingarrow_forwardMany cells are transparent anti colorless. Structures of great interest in biology and medicine can be practically invisible to ordinary microscopy. To indicate the size and shape of cell structures, an interference micro-scope reveals a difference in index of refraction as a shift in interference fringes. The idea is exemplified in the following problem. An air wedge is formed between two glass plates in contact along one edge and slightly separated at the opposite edge as in Figure P37.37. When the plates are illuminated with monochromatic light from above, the reflected light has 85 dark fringes. Calculate the number of dark fringes that appear if water (n = 1.33) replaces the air between the plates.arrow_forward
- You are told not to shoot until you see the whites of their eyes. If the eyes are separated by 6.5 cm and the diameter of your pupil is 5.0 mm, at what distance can you resolve the two eyes using light of wavelength 555 nm?arrow_forwardTwo lamps producing light of wavelength 589 nm are fixed 1.0 m apart on a wooden plank. What is the maximum distance an observer can be and still resolve the lamps as two separate sources of light, if the resolution is affected solely by the diffraction of light entering the eye? Assume light enters the eye through a pupil of diameter 4.5 mm.arrow_forwardInto one arm of a Michelson interferometer, a plastic sheet of thickness 75 m is inserted, which causes a shift in the interference pattern by 86 fringes. The light source has wavelength of 610 nm in air. What is the index of refraction of this plastic?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY