COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 76QAP
To determine
Width of slit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
•7 Light of wavelength 633 nm is incident on a narrow slit. The
angle between the first diffraction minimum on one side of the
central maximum and the first minimum on the other side is 1.20⁰.
What is the width of the slit?
•4 In Fig. 35-32a, a beam of light in material 1 is incident on a
boundary at an angle of 30°. The extent to which the light is ben
due to refraction depends, in part, on the index of refraction n, o
material 2. Figure 35-32b gives the angle of refraction Oz versus n
for a range of possible n2 values, from n, = 1.30 to n, = 1.90. Wha
is the speed of light in material 1?
в,
40°
300!
30°
в,
20°
по
(a)
(b)
•8 In Fig. 35-33, two light pulses
are sent through layers of plastic
Pulse
п
п
with thicknesses of either L or 2L
as shown and indexes of refraction
Pulse
n = 1.55, nz = 1.70, nz = 1.60, n4 = i
1.45, ng = 1.59, ng = 1.65, and n, =
1.50. (a) Which pulse travels
through the plastic in less time?
(b) What multiple of Lic gives the difference in the traversal
times of the pulses?
%3D
Figure 35-33 Problem 8.
Chapter 23 Solutions
COLLEGE PHYSICS
Ch. 23 - Prob. 1QAPCh. 23 - Prob. 2QAPCh. 23 - Prob. 3QAPCh. 23 - Prob. 4QAPCh. 23 - Prob. 5QAPCh. 23 - Prob. 6QAPCh. 23 - Prob. 7QAPCh. 23 - Prob. 8QAPCh. 23 - Prob. 9QAPCh. 23 - Prob. 10QAP
Ch. 23 - Prob. 11QAPCh. 23 - Prob. 12QAPCh. 23 - Prob. 13QAPCh. 23 - Prob. 14QAPCh. 23 - Prob. 15QAPCh. 23 - Prob. 16QAPCh. 23 - Prob. 17QAPCh. 23 - Prob. 18QAPCh. 23 - Prob. 19QAPCh. 23 - Prob. 20QAPCh. 23 - Prob. 21QAPCh. 23 - Prob. 22QAPCh. 23 - Prob. 23QAPCh. 23 - Prob. 24QAPCh. 23 - Prob. 25QAPCh. 23 - Prob. 26QAPCh. 23 - Prob. 27QAPCh. 23 - Prob. 28QAPCh. 23 - Prob. 29QAPCh. 23 - Prob. 30QAPCh. 23 - Prob. 31QAPCh. 23 - Prob. 32QAPCh. 23 - Prob. 33QAPCh. 23 - Prob. 34QAPCh. 23 - Prob. 35QAPCh. 23 - Prob. 36QAPCh. 23 - Prob. 37QAPCh. 23 - Prob. 38QAPCh. 23 - Prob. 39QAPCh. 23 - Prob. 40QAPCh. 23 - Prob. 41QAPCh. 23 - Prob. 42QAPCh. 23 - Prob. 43QAPCh. 23 - Prob. 44QAPCh. 23 - Prob. 45QAPCh. 23 - Prob. 46QAPCh. 23 - Prob. 47QAPCh. 23 - Prob. 48QAPCh. 23 - Prob. 49QAPCh. 23 - Prob. 50QAPCh. 23 - Prob. 51QAPCh. 23 - Prob. 52QAPCh. 23 - Prob. 53QAPCh. 23 - Prob. 54QAPCh. 23 - Prob. 55QAPCh. 23 - Prob. 56QAPCh. 23 - Prob. 57QAPCh. 23 - Prob. 58QAPCh. 23 - Prob. 59QAPCh. 23 - Prob. 60QAPCh. 23 - Prob. 61QAPCh. 23 - Prob. 62QAPCh. 23 - Prob. 63QAPCh. 23 - Prob. 64QAPCh. 23 - Prob. 65QAPCh. 23 - Prob. 66QAPCh. 23 - Prob. 67QAPCh. 23 - Prob. 68QAPCh. 23 - Prob. 69QAPCh. 23 - Prob. 70QAPCh. 23 - Prob. 71QAPCh. 23 - Prob. 72QAPCh. 23 - Prob. 73QAPCh. 23 - Prob. 74QAPCh. 23 - Prob. 75QAPCh. 23 - Prob. 76QAPCh. 23 - Prob. 77QAPCh. 23 - Prob. 78QAPCh. 23 - Prob. 79QAPCh. 23 - Prob. 80QAPCh. 23 - Prob. 81QAPCh. 23 - Prob. 82QAPCh. 23 - Prob. 83QAPCh. 23 - Prob. 84QAPCh. 23 - Prob. 85QAPCh. 23 - Prob. 86QAPCh. 23 - Prob. 87QAPCh. 23 - Prob. 88QAPCh. 23 - Prob. 89QAPCh. 23 - Prob. 90QAPCh. 23 - Prob. 91QAPCh. 23 - Prob. 92QAPCh. 23 - Prob. 93QAPCh. 23 - Prob. 94QAPCh. 23 - Prob. 95QAPCh. 23 - Prob. 96QAPCh. 23 - Prob. 97QAPCh. 23 - Prob. 98QAPCh. 23 - Prob. 99QAPCh. 23 - Prob. 100QAPCh. 23 - Prob. 101QAPCh. 23 - Prob. 102QAPCh. 23 - Prob. 103QAPCh. 23 - Prob. 104QAPCh. 23 - Prob. 105QAPCh. 23 - Prob. 106QAPCh. 23 - Prob. 107QAPCh. 23 - Prob. 108QAPCh. 23 - Prob. 109QAPCh. 23 - Prob. 110QAPCh. 23 - Prob. 111QAPCh. 23 - Prob. 112QAPCh. 23 - Prob. 113QAPCh. 23 - Prob. 114QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- • A beam of light strikes the plane surface of silicate flint glass at an angle of incidence of 45°. The index of refraction of the glass varies with wavelength (see Figure 31-59). How much smaller is the angle of refraction for violet light of wavelength 400 nm than the angle of refraction for red light of wavelength 700 nm? 49 11 1.7 Silicate flint glass 1.6 Borate flint glass Quartz Silicate crown glass 1.5 Violet Red 1.4 400 500 600 700 2, nmarrow_forwardNonearrow_forwardI need help solving this problem. Please explain in detail and make sure the solution is fully viewable.arrow_forward
- •48 A high-powered laser beam (A = 600 nm) with a beam diam- eter of 12 cm is aimed at the Moon, 3.8 x 10° km distant. The beam spreads only because of diffraction. The angular location of the edge of the central diffraction disk (see Eq. 36-12) is given by 1.22A sin 0 where d is the diameter of the beam aperture. What is the diameter of the central diffraction disk on the Moon's surface?arrow_forward•1 In Fig. 35-31, a light wave along ray r, reflects once from a mirror and a light wave along ray r, reflects twice from that same mirror and once from a tiny mirror at distance L from the bigger mirror. (Neglect the slight tilt Figure 35-31 Problems 1 and 2. of the rays.) The waves have wave- length 620 nm and are initially in phase. (a) What is the smallest value of L that puts the final light waves exactly out of phase? (b) With the tiny mirror initially at that value of L, how far must it be moved away from the bigger mirror to again put the final waves out of phase?arrow_forward• Explain how the aperture geometry relates to the diffraction pattern.• Predict how changing the wavelength or aperture size affects the diffraction pattern.arrow_forward
- 07 as 04 03 02 01 • Based on your understanding of interference and diffraction, explain why you think the intensity profile of a double slit follows the pattern shown in the figure below? How do you think this pattern would change as (a) the separation between the slits changes and (b) the width of the two slits changes?arrow_forward1. A student shines a red laser at two slits in a piece of paper. The slits are 0.080 mm apart. A screen is placed 2.0 m away from the slits. Upon taking measurements, the student determines that ⚫ there are 5.0 cm between the first and fourth nodal lines. • the distance from the centre of the pattern to the third nodal line is 4.2 cm. ⚫ the angle to the eighth anti-nodal line from the right bisector is 3.8°. Perform three different calculations to determine the wavelength of this light. Account for any difference in values.arrow_forwardWhat is the separation between two slits for which 610-nm orange light has its first maximum at an angle of 30.0°?arrow_forward
- What is the maximum number of lines per centimeter a diffraction grating can have and produce a complete first-order spectrum for visible light?arrow_forwardMany cells are transparent anti colorless. Structures of great interest in biology and medicine can be practically invisible to ordinary microscopy. To indicate the size and shape of cell structures, an interference micro-scope reveals a difference in index of refraction as a shift in interference fringes. The idea is exemplified in the following problem. An air wedge is formed between two glass plates in contact along one edge and slightly separated at the opposite edge as in Figure P37.37. When the plates are illuminated with monochromatic light from above, the reflected light has 85 dark fringes. Calculate the number of dark fringes that appear if water (n = 1.33) replaces the air between the plates.arrow_forwardFind the distance between two slits that produces the first minimum for 410-nm violet light at an angle of 45.0°.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY