![COLLEGE PHYSICS](https://www.bartleby.com/isbn_cover_images/9781464196393/9781464196393_largeCoverImage.gif)
Concept explainers
(a)
The three smallest angles on the either side of central maximum at which no light will reach the cat's retina and it is assumed the eyeball of cat is filled with air.
![Check Mark](/static/check-mark.png)
Answer to Problem 104QAP
1st smallest angle =
2nd smallest angle =
3rd smallest angle =
Explanation of Solution
Given:
Width of slit =
Formula used:
Following equation satisfy for the diffraction of single slit,
Calculation:
Since, w is very small to
In this situation, we can apply the following approximation,
Now, let's plug all values in above equation,
Conclusion:
So, the three smallest angles on the either side of central maximum at which no light will reach the cat's retina and medium inside the eye ball is air are
(b)
The three smallest angles on the either side of central maximum at which no light will reach the cat's retina and it is assumed the eyeball of cat is filled with a liquid having refractive index 1.4.
![Check Mark](/static/check-mark.png)
Answer to Problem 104QAP
1st smallest angle =
2nd smallest angle =
3rd smallest angle =
Explanation of Solution
Given:
Refractive index fluid that is in the eyeball,
Wavelength of light in air =
Width of slit =
Formula used:
Wavelength of light in medium is written as,
Calculation:
Wavelength of light in fluid,
Now, from above formula,
Let's plug all values,
Conclusion:
Thus, the three smallest angles on either side of retina of cat's eye when eyeball is filled with fluid having refractive index
(c)
The explanation of the order of fringes due to diffraction of light by cat's eye
![Check Mark](/static/check-mark.png)
Answer to Problem 104QAP
Cat cannot distinguish the location of fringe on the retina.
Explanation of Solution
From above discussion, we can see that angle of diffraction of light on either side of central bright spot of the retina is very small. So, location of bright and dark fringes would be very close to each other. Cat's eye has no ability to perceive that order of fringes. So, cat would perceive it as continuous bright light not as alternate dark and bright that occurs due to diffraction.
Conclusion:
Thus, cat would not see that alternate dark and bright fringes.
Want to see more full solutions like this?
Chapter 23 Solutions
COLLEGE PHYSICS
- What is the direction of a force vector given by ~v = −6Nˆi − 8Nˆj?arrow_forwardWhat can be said of the position vector of an object far from any influences on its motion?arrow_forward་ Consider a ball sliding down a ramp as shown above. The ball is already in motion at the position 1. Which direction best approximates the direction of acceleration vector a when the object is at position 2?arrow_forward
- Problem Eight. A snowmobile is originally at the point with position vector 31.1 m at 95.5° counterclockwise from the x-axis, moving with velocity 4.89 m/s at 40.0°. It moves with constant acceleration 1.73 m/s² at 200°. After 5.00 s have elapsed, find the following. 9.) The velocity vector in m/s. (A)=-4.38+0.185ĵ (D) = 0.185 +4.38ĵ (B)=0.1851-4.38ĵ (E) = 4.38 +0.185ĵ (C) v=-0.1851-4.38ĵ (A)=-39.3-4.30ĵ 10.) The final position vector in meters. (B)=39.3-4.30ĵ (C) = -4.61 +39.3ĵ (D) = 39.31 +4.30ĵ (E) = 4.30 +39.3ĵarrow_forwardProblem Seven. A football receiver running straight downfield at 5.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at an angle of 35.0° above the horizon. 8.) If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the distance between the quarterback and the receiver when the catch is made. (A) 21.3 (B) 17.8 (C) 18.8 (D) 19.9 (E) 67.5arrow_forward3 Consider a ball sliding down a ramp as shown above. The ball is already in motion at the position 1. Which direction best approximates the direction of instantaneous velocity vector V when the object is at position 3?arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)