Organic Chemistry, Binder Ready Version
Organic Chemistry, Binder Ready Version
2nd Edition
ISBN: 9781118454312
Author: David R. Klein
Publisher: WILEY
Question
Book Icon
Chapter 23, Problem 50PP

(a)

Interpretation Introduction

Interpretation: Using a different type of reactions, 1-hexanol is to be prepared from hexyl amine, heptyl amine and pentyl amine

Concept Introduction: A number of transformations are used to prepare 1-hexanol.  Some of them are listed as follows:

  1. a) Alcohol on treatment with phosphorous tribromide gives alkyl bromide
  2. b) Alkyl bromide in azide synthesis produces primary amine
  3. c) Alkyl halide on treatment with sodium cyanide gives alkyl cyanide
  4. d) Cyanide on reduction gives alkyl amine with an increment of one carbon atom skeleton
  5. e) Alkene on ozonolysis produces carbonyl compounds
  6. f) Alkyl halides with strong base gives alkene
  7. g) Sodium cyanoborohydride is a strong reducing agent than sodium borohydride.  It reduces the carbonyl group into amine group in a rapid way.  So, it is called as reductive amination reactions.  Aldehyde or ketone group is reacted with ammonia in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce primary amines.

Organic Chemistry, Binder Ready Version, Chapter 23, Problem 50PP , additional homework tip  1

Using these concepts, we can transfer 1-hexanol into the given compounds.

(b)

Interpretation Introduction

Interpretation: Using a different type of reactions, 1-hexanol is to be prepared from hexyl amine, heptyl amine and pentyl amine

Concept Introduction: A number of transformations are used to prepare 1-hexanol.  Some of them are listed as follows:

  1. a) Alcohol on treatment with phosphorous tribromide gives alkyl bromide
  2. b) Alkyl bromide in azide synthesis produces primary amine
  3. c) Alkyl halide on treatment with sodium cyanide gives alkyl cyanide
  4. d) Cyanide on reduction gives alkyl amine with an increment of one carbon atom skeleton
  5. e) Alkene on ozonolysis produces carbonyl compounds
  6. f) Alkyl halides with strong base gives alkene
  7. g) Sodium cyanoborohydride is a strong reducing agent than sodium borohydride.  It reduces the carbonyl group into amine group in a rapid way.  So, it is called as reductive amination reactions.  Aldehyde or ketone group is reacted with ammonia in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce primary amines.

Organic Chemistry, Binder Ready Version, Chapter 23, Problem 50PP , additional homework tip  2

Using these concepts, we can transfer 1-hexanol into the given compounds.

(c)

Interpretation Introduction

Interpretation: Using a different type of reactions, 1-hexanol is to be prepared from hexyl amine, heptyl amine and pentyl amine

Concept Introduction: A number of transformations are used to prepare 1-hexanol.  Some of them are listed as follows:

  1. a) Alcohol on treatment with phosphorous tribromide gives alkyl bromide
  2. b) Alkyl bromide in azide synthesis produces primary amine
  3. c) Alkyl halide on treatment with sodium cyanide gives alkyl cyanide
  4. d) Cyanide on reduction gives alkyl amine with an increment of one carbon atom skeleton
  5. e) Alkene on ozonolysis produces carbonyl compounds
  6. f) Alkyl halides with strong base gives alkene
  7. g) Sodium cyanoborohydride is a strong reducing agent than sodium borohydride.  It reduces the carbonyl group into amine group in a rapid way.  So, it is called as reductive amination reactions.  Aldehyde or ketone group is reacted with ammonia in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce primary amines.

Organic Chemistry, Binder Ready Version, Chapter 23, Problem 50PP , additional homework tip  3

Using these concepts, we can transfer 1-hexanol into the given compounds.

Blurred answer
Students have asked these similar questions
Write structural formulas for the major products by doing addition reactions 1. You must add H2 as Pt is catalyst it does not take part in reactions only speed up the process H₂ CH2=CH-CH3 Pt 2. Add HCI break it into H and Cl CH3 HCI 3. Add Br2 only CC14 is catalyst CH3-CH=CH2 B12 CCl4 4. Add water to this and draw major product, H2SO4 is catalyst you have add water H20 in both the reaction below H₂SO4 CH3-CH=CH2 CH3 H2SO4/H₂O CH3-C=CH2 reflux ?
Plan the synthesis of the following compound using the starting material provided and any other reagents needed as long as carbon based reagents have 3 carbons or less. Either the retrosynthesis or the forward synthesis (mechanisms are not required but will be graded if provided) will be accepted if all necessary reagents and intermediates are shown (solvents and temperature requirements are not needed unless specifically involved in the reaction, i.e. DMSO in the Swern oxidation or heat in the KMnO4 oxidation). H H
Hint These are benzene substitution reactions. ALCI3 and UV light are catalyst no part in reactions and triangle A means heating. A. Add ethyl for Et in benzene ring alkylation reaction EtCl = CH3CH2CL 1) EtC1 / AlCl3 / A ? B: Add Br to benzene ring ( substitution) 2) Br₂ / uv light ? C Add (CH3)2 CHCH2 in benzene ring ( substitution) (CH3)2CHCH,C1 / AICI, ?

Chapter 23 Solutions

Organic Chemistry, Binder Ready Version

Ch. 23.4 - Prob. 10CCCh. 23.4 - Prob. 11CCCh. 23.5 - Prob. 2LTSCh. 23.5 - Prob. 12PTSCh. 23.5 - Prob. 13PTSCh. 23.6 - Prob. 3LTSCh. 23.6 - Prob. 14PTSCh. 23.6 - Prob. 15ATSCh. 23.6 - Prob. 16ATSCh. 23.6 - Prob. 17ATSCh. 23.7 - Prob. 18PTSCh. 23.7 - Prob. 19PTSCh. 23.7 - Prob. 20PTSCh. 23.7 - Prob. 21ATSCh. 23.8 - Prob. 22CCCh. 23.8 - Prob. 23CCCh. 23.8 - Prob. 24CCCh. 23.9 - Prob. 5LTSCh. 23.9 - Prob. 25PTSCh. 23.9 - Prob. 26ATSCh. 23.9 - Prob. 27ATSCh. 23.9 - Prob. 28ATSCh. 23.10 - Prob. 29CCCh. 23.11 - Prob. 30CCCh. 23.11 - Prob. 6LTSCh. 23.11 - Prob. 31PTSCh. 23.11 - Prob. 32ATSCh. 23.11 - Prob. 33ATSCh. 23.12 - Prob. 34CCCh. 23.12 - Prob. 35CCCh. 23.13 - Prob. 36CCCh. 23.13 - Prob. 37CCCh. 23 - Prob. 38PPCh. 23 - Prob. 39PPCh. 23 - Prob. 40PPCh. 23 - Prob. 41PPCh. 23 - Prob. 42PPCh. 23 - Prob. 43PPCh. 23 - Prob. 44PPCh. 23 - Prob. 45PPCh. 23 - Prob. 46PPCh. 23 - Prob. 47PPCh. 23 - Prob. 48PPCh. 23 - Prob. 49PPCh. 23 - Prob. 50PPCh. 23 - Prob. 51PPCh. 23 - Prob. 52PPCh. 23 - Prob. 53PPCh. 23 - Prob. 54PPCh. 23 - Prob. 55PPCh. 23 - Prob. 56PPCh. 23 - Prob. 57PPCh. 23 - Prob. 58PPCh. 23 - Prob. 59PPCh. 23 - Prob. 60PPCh. 23 - Prob. 61PPCh. 23 - Prob. 62PPCh. 23 - Prob. 63PPCh. 23 - Prob. 64PPCh. 23 - Prob. 65PPCh. 23 - Prob. 66PPCh. 23 - Prob. 67PPCh. 23 - Prob. 68PPCh. 23 - Prob. 69PPCh. 23 - Prob. 70PPCh. 23 - Prob. 71PPCh. 23 - Prob. 72PPCh. 23 - Prob. 73PPCh. 23 - Prob. 74PPCh. 23 - Prob. 75PPCh. 23 - Prob. 76PPCh. 23 - Prob. 77IPCh. 23 - Prob. 78IPCh. 23 - Prob. 79IPCh. 23 - Prob. 80IPCh. 23 - Prob. 81IPCh. 23 - Prob. 82IPCh. 23 - Prob. 83IPCh. 23 - Prob. 84IPCh. 23 - Prob. 85IPCh. 23 - Prob. 86IPCh. 23 - Prob. 87IPCh. 23 - Prob. 88IPCh. 23 - Prob. 89IPCh. 23 - Prob. 90IPCh. 23 - Prob. 91CPCh. 23 - Prob. 92CPCh. 23 - Prob. 93CPCh. 23 - Prob. 94CPCh. 23 - Prob. 95CPCh. 23 - Prob. 96CPCh. 23 - Prob. 97CPCh. 23 - Prob. 98CP
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY