
Concept explainers
A homozygous plant with 20-cm-diameter flowers is crossed with a homozygous plant of the same species that has 40-cm-diameter flowers. The F1 plants all have flowers 30 cm in diameter. In the ⊢2 generation of 512 plants, 2 plants have flowers 20 cm in diameter, 2 plants have flowers 40 cm in diameter, and the remaining 508 plants have flowers of a range of sizes in between.
- (a) Assuming all alleles involved act additively, how many genes control flower size in this plant?
- (b) What frequency distribution of flower diameter would you expect to see in the progeny of a backcross between F1 plant and the large-flowered parent?
(a)

To determine: The number of genes which control flower size in the given plant assuming all alleles involved act additively.
Introduction: The traits which show variation and often fall into a continuous range of phenotypes that are difficult to categorize into distinct categories are known to exhibit continuous variation. For example, height in humans. The genetic phenomenon that measures and explain the continuous variation in quantitative terms across a range of phenotypes is known as quantitative inheritance. The varying phenotypes are the result of the input of genes at more than one loci, and generally many loci and therefore referred to as polygenic.
Explanation of Solution
The concept of additive alleles is the basis of continuous variation. The alleles that contribute to the most observable traits like height, weight, eye color, and so on are known as additive alleles. Polygenic traits are additive. In the given question, a homozygous plant with 20 cm diameter flower is crossed with a homozygous plant with 40 cm diameter flower of the same species. The F1 generation has all flowers with 30 cm in diameter. In the F2 generation, out of 512 plants, two plants have flowers with 20 cm diameter, two plants have flowers with 40 cm diameter, and the remaining 508 plants have flowers with a range of diameters in between.
Following is the formula to calculate the number of polygenes:
Here,
The ratio of F2 plants with 20 cm diameter flowers
The ratio of F2 plants with 40 cm diameter flowers
The F2 ratio suggests that four genes, each with two alleles control the diameter of the flower in a given plant.
Thus, there are four pairs of genes which control flower size in the given plant.
(b)

To determine: The expected frequency distribution of flower diameter from the backcross between an F1 plant and the large-flowered parent.
Introduction: In backcross, a hybrid is crossed with one of its parents. This cross is done to get the progeny having genetic identity closer to the parent. The application of the back cross is in horticulture, animal breeding, and so on.
Explanation of Solution
Let us assume that the four genes which control flower size in the given plant are A, B, C, and D.
The genotype of an F1 plant: AaBbCcDd
The genotype of the large-flowered parent: AABBCCDD
The frequency distribution in the backcross would be: 1/16, 4/16, 6/16, 4/16, and 1/16.
Thus, the frequency distribution of flower diameter from the backcross between an F1 plant and the large-flowered parent is 1/16, 4/16, 6/16, 4/16, and 1/16.
Want to see more full solutions like this?
Chapter 23 Solutions
Concepts of Genetics (11th Edition)
- What symbolic and cultural behaviors are evident in the archaeological record and associated with Neandertals and anatomically modern humans in Europe beginning around 35,000 yBP (during the Upper Paleolithic)?arrow_forwardDescribe three cranial and postcranial features of Neanderthals skeletons that are likely adaptation to the cold climates of Upper Pleistocene Europe and explain how they are adaptations to a cold climate.arrow_forwardBiology Questionarrow_forward
- ✓ Details Draw a protein that is embedded in a membrane (a transmembrane protein), label the lipid bilayer and the protein. Identify the areas of the lipid bilayer that are hydrophobic and hydrophilic. Draw a membrane with two transporters: a proton pump transporter that uses ATP to generate a proton gradient, and a second transporter that moves glucose by secondary active transport (cartoon-like is ok). It will be important to show protons moving in the correct direction, and that the transporter that is powered by secondary active transport is logically related to the proton pump.arrow_forwarddrawing chemical structure of ATP. please draw in and label whats asked. Thank you.arrow_forwardOutline the negative feedback loop that allows us to maintain a healthy water concentration in our blood. You may use diagram if you wisharrow_forward
- Give examples of fat soluble and non-fat soluble hormonesarrow_forwardJust click view full document and register so you can see the whole document. how do i access this. following from the previous question; https://www.bartleby.com/questions-and-answers/hi-hi-with-this-unit-assessment-psy4406-tp4-report-assessment-material-case-stydu-ms-alecia-moore.-o/5e09906a-5101-4297-a8f7-49449b0bb5a7. on Google this image comes up and i have signed/ payed for the service and unable to access the full document. are you able to copy and past to this response. please see the screenshot from google page. unfortunality its not allowing me attch the image can you please show me the mathmetic calculation/ workout for the reult sectionarrow_forwardIn tabular form, differentiate between reversible and irreversible cell injury.arrow_forward
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningHuman Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College
- Biology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning





