
Concept explainers
A homozygous plant with 20-cm-diameter flowers is crossed with a homozygous plant of the same species that has 40-cm-diameter flowers. The F1 plants all have flowers 30 cm in diameter. In the ⊢2 generation of 512 plants, 2 plants have flowers 20 cm in diameter, 2 plants have flowers 40 cm in diameter, and the remaining 508 plants have flowers of a range of sizes in between.
- (a) Assuming all alleles involved act additively, how many genes control flower size in this plant?
- (b) What frequency distribution of flower diameter would you expect to see in the progeny of a backcross between F1 plant and the large-flowered parent?
(a)

To determine: The number of genes which control flower size in the given plant assuming all alleles involved act additively.
Introduction: The traits which show variation and often fall into a continuous range of phenotypes that are difficult to categorize into distinct categories are known to exhibit continuous variation. For example, height in humans. The genetic phenomenon that measures and explain the continuous variation in quantitative terms across a range of phenotypes is known as quantitative inheritance. The varying phenotypes are the result of the input of genes at more than one loci, and generally many loci and therefore referred to as polygenic.
Explanation of Solution
The concept of additive alleles is the basis of continuous variation. The alleles that contribute to the most observable traits like height, weight, eye color, and so on are known as additive alleles. Polygenic traits are additive. In the given question, a homozygous plant with 20 cm diameter flower is crossed with a homozygous plant with 40 cm diameter flower of the same species. The F1 generation has all flowers with 30 cm in diameter. In the F2 generation, out of 512 plants, two plants have flowers with 20 cm diameter, two plants have flowers with 40 cm diameter, and the remaining 508 plants have flowers with a range of diameters in between.
Following is the formula to calculate the number of polygenes:
Here,
The ratio of F2 plants with 20 cm diameter flowers
The ratio of F2 plants with 40 cm diameter flowers
The F2 ratio suggests that four genes, each with two alleles control the diameter of the flower in a given plant.
Thus, there are four pairs of genes which control flower size in the given plant.
(b)

To determine: The expected frequency distribution of flower diameter from the backcross between an F1 plant and the large-flowered parent.
Introduction: In backcross, a hybrid is crossed with one of its parents. This cross is done to get the progeny having genetic identity closer to the parent. The application of the back cross is in horticulture, animal breeding, and so on.
Explanation of Solution
Let us assume that the four genes which control flower size in the given plant are A, B, C, and D.
The genotype of an F1 plant: AaBbCcDd
The genotype of the large-flowered parent: AABBCCDD
The frequency distribution in the backcross would be: 1/16, 4/16, 6/16, 4/16, and 1/16.
Thus, the frequency distribution of flower diameter from the backcross between an F1 plant and the large-flowered parent is 1/16, 4/16, 6/16, 4/16, and 1/16.
Want to see more full solutions like this?
Chapter 23 Solutions
Concepts of Genetics (11th Edition)
- Why are nutrient absorption and dosage levels important when taking multivitamins and vitamin and mineral supplements?arrow_forwardI'm struggling with this topic and would really appreciate your help. I need to hand-draw a diagram and explain the process of sexual differentiation in humans, including structures, hormones, enzymes, and other details. Could you also make sure to include these terms in the explanation? . Gonads . Wolffian ducts • Müllerian ducts . ⚫ Testes . Testosterone • Anti-Müllerian Hormone (AMH) . Epididymis • Vas deferens ⚫ Seminal vesicles ⚫ 5-alpha reductase ⚫ DHT - Penis . Scrotum . Ovaries • Uterus ⚫ Fallopian tubes - Vagina - Clitoris . Labia Thank you so much for your help!arrow_forwardRequisition Exercise A phlebotomist goes to a patient’s room with the following requisition. Hometown Hospital USA 125 Goodcare Avenue Small Town, USAarrow_forward
- I’m struggling with this topic and would really appreciate your help. I need to hand-draw a diagram and explain the process of sexual differentiation in humans, including structures, hormones, enzymes, and other details. Could you also make sure to include these terms in the explanation? • Gonads • Wolffian ducts • Müllerian ducts • Testes • Testosterone • Anti-Müllerian Hormone (AMH) • Epididymis • Vas deferens • Seminal vesicles • 5-alpha reductase • DHT • Penis • Scrotum • Ovaries • Uterus • Fallopian tubes • Vagina • Clitoris • Labia Thank you so much for your help!arrow_forwardI’m struggling with this topic and would really appreciate your help. I need to hand-draw a diagram and explain the process of sexual differentiation in humans, including structures, hormones, enzymes, and other details. Could you also make sure to include these terms in the explanation? • Gonads • Wolffian ducts • Müllerian ducts • Testes • Testosterone • Anti-Müllerian Hormone (AMH) • Epididymis • Vas deferens • Seminal vesicles • 5-alpha reductase • DHT • Penis • Scrotum • Ovaries • Uterus • Fallopian tubes • Vagina • Clitoris • Labia Thank you so much for your help!arrow_forwardOlder adults have unique challenges in terms of their nutrient needs and physiological changes. Some changes may make it difficult to consume a healthful diet, so it is important to identify strategies to help overcome these obstacles. From the list below, choose all the correct statements about changes in older adults. Select all that apply. Poor vision can make it difficult for older adults to get to a supermarket, and to prepare meals. With age, taste and visual perception decline. As people age, salivary production increases. In older adults with dysphagia, foods like creamy soups, applesauce, and yogurt are usually well tolerated. Lean body mass increases in older adults.arrow_forward
- When physical activity increases, energy requirements increase also. Depending on the type, intensity, and duration of physical activity, the body’s requirements for certain macronutrients may change as well. From the list below, choose all the correct statements about the effects of increased physical activity or athletic training. Select all that apply. An athlete who weighs 70 kg (154 lb) should consume 420 to 700 g of carbohydrate per day. How much additional energy an athlete needs depends on the specific activity the athlete engages in and the frequency of the activity. Those participating in vigorous exercise should restrict their fat intake to less than 15%% of total energy intake. Athletes who are following energy-restricted diets are at risk for consuming insufficient protein. The recommendation to limit saturated fat intake to less than 10%% of total energy intake does not apply to athletes or those who regularly engage in vigorous physical activity.arrow_forwardWhen taking vitamins and vitamin-mineral supplements, how can one be sure they are getting what they are taking?arrow_forwardHow many milligrams of zinc did you consume on average per day over the 3 days? (See the Actual Intakes vs. Recommended Intakes Report with all days checked.) Enter the number of milligrams of zinc rounded to the first decimal place in the box below. ______ mg ?arrow_forward
- the direct output from molecular replacement is a coordinate file showing the orientation of the unknown target protein in the unit cell. true or false?arrow_forwardthe direct output from molecular replacement is a coordinate file showing the orientation of the unknown target protein in the unit cell. true or false?arrow_forwardDid your intake of vitamin C meet or come very close to the recommended amount? yes noarrow_forward
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningHuman Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College
- Biology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning





