DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 8P
Figure 22.B gives data for cutting speed and tool life. Determine the constants for the Taylor tool life equation for these data. What do you think the tool material might have been?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
During turning tests, using a cemented carbide tool resulted in a 1‑min tool life at a cutting speed = 4.8 m/s and a 22‑min tool life at a speed = 2.0 m/s. (a) Find the n and C
Q3 Provided below is the Tool life data for cutting low carbon steel with HSS tool. Draw the
tool life relation and
1- find the n and c exponent for the tool life equation
2- find the cutting speed for 14 min tool life
Cutting Speed
(ft/min)
250 180 150 100
Tool Life (min) 2 5 10 30
I need correct answer only
Chapter 22 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 22 - For metal-cutting tools, what is the most...Ch. 22 - What is hot hardness compared to hardness?Ch. 22 - Prob. 3RQCh. 22 - Why is impact strength an important property in...Ch. 22 - Cemented carbide tools are made by a powder...Ch. 22 - What are the primary considerations in tool...Ch. 22 - What is the general strategy behind coated tools?Ch. 22 - Prob. 8RQCh. 22 - How is a CBN tool manufactured?Ch. 22 - Prob. 10RQ
Ch. 22 - Prob. 11RQCh. 22 - Discuss the constraints in the selection of a...Ch. 22 - What does cemented mean in the manufacture of...Ch. 22 - What advantage do ground carbide inserts have over...Ch. 22 - What is a chip groove?Ch. 22 - What is the DCL?Ch. 22 - Suppose you made four beams out of carbide, HSS,...Ch. 22 - Multiple coats or layers are put on the carbide...Ch. 22 - What tool material would you recommend for...Ch. 22 - What makes the process that makes TiC coatings for...Ch. 22 - Why does a TiN-coated tool consume less power than...Ch. 22 - For what work material are CBN tools more commonly...Ch. 22 - Why is CBN better for machining steel than...Ch. 22 - What is the typical coefficient of variation for...Ch. 22 - What is meant by the statement Tool life is a...Ch. 22 - The typical value of a coefficient of variation in...Ch. 22 - Machinability is defined in many ways. Explain how...Ch. 22 - What are the chief functions of cutting fluids?Ch. 22 - Prob. 29RQCh. 22 - Why is the PVD process used to coat HSS tools?Ch. 22 - Why is there no universal cutting tool material?Ch. 22 - What is an 18-4-1 HSS composed of?Ch. 22 - Over the years, tool materials have been developed...Ch. 22 - Why is the rigidity of the machine tool an...Ch. 22 - Explain how it can be that the tool wears when it...Ch. 22 - What is a honed edge on a cutting tool and why is...Ch. 22 - Suppose you have a turning operation using a tool...Ch. 22 - A 2 in.-diameter bar of steel was turned at 284...Ch. 22 - Prob. 3PCh. 22 - The following data have been obtained for...Ch. 22 - In the insert is set with a 0 side cutting-edge...Ch. 22 - Prob. 6PCh. 22 - Here is a single point tool. Identify angles A...Ch. 22 - Figure 22.B gives data for cutting speed and tool...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
A chiller is providing 5 tons of cooling to an air handler by cooling water transfer between the two devices. T...
Heating Ventilating and Air Conditioning: Analysis and Design
While researching fluid dynamics, you come across a reference to the dimensionless number called the Laplace nu...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Peg P is driven by the forked link OA along the described by r=e, where r is in meters =4 rad, the link has an ...
Engineering Mechanics: Dynamics (14th Edition)
Comprehension Check 8-5
A 75-gram [g] cylindrical rod is measured to be 10 centimeters [cm] long and 2.5 centim...
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
Exhaust gas from a furnace is used to preheat the combustion air supplied to the furnace burners. The gas,which...
Fundamentals of Heat and Mass Transfer
Determine the force in each member of the truss and state if the members are in tension or compression. Prob. R...
Engineering Mechanics: Statics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In a cutting test with 0.3 mm flank wear as tool failure criterion, a tool life of 10 min was obtained at a cutting velocity of 20 m/min. Taking tool life exponent as 0.25, the tool life in minutes at 40 m/min of cutting velocity will be?arrow_forwardQUESTION 2 Tool life can be defined as the actual machining time of successive surface sharpening between raw material and cutting tool. Tool life is commonly presented in the form of a curve in'which the log of the cutting speed is plotted against the log of the tool life measured in minutes. Justify the action that should be taken to remove maximum material per minute with the same tool life and at the same time keep the good surface finish.arrow_forwardIn turning of stales steel alloy, 1100 mm length and 400 mm diameter, the Feed was 0.35 mm/rev, and depth of cut = 2.5 mm. The tool used in this cutting is cemented carbide tool where Taylor tool life parameters are n = 0.24 and C = 450 (tool life (min) and cutting speed (m/min). Compute the cutting speed that will allow the tool life to be 10% longer than the machining time for this part.arrow_forward
- 34 - The outside diameter of a cylinder made of titanium alloy is to be turned. The starting diameter is 400 mm and the length is 1100 mm. The feed is 0.35 mm/rev and the depth of cut is 2.5 mm. The cut will be made with a cemented carbide cutting tool whose Taylor tool life parameters are: n= 0.24 and C-450. Units for the Taylor equation are min for tool life and m/min for cutting speed. Compute the cutting speed that will allow the tool life to be just equal to the cutting time for this part. vT" = C . AD,L Tm %3D fv a) 325.8 m /min b) 275.8 m/min 226.6 m/min d) O 187.9 m/minarrow_forwardA number of through holes with 10-mm-diameter have been drilled through 30-mm thick cast iron plate. At a cutting speed of 25 m/min, the high-speed steel drill tool lasted for 44 holes. But, when the cutting speed increased to 35 m/min, the drill tool lasted for only five holes. The feed used in the both cases is 0.08 mm/rev. Determine the values of n and Cin the Taylor tool life equation for the data, where cutting speed v is expressed in m/min, and tool life T is expressed in min.arrow_forwardQuestion: Determine the optimum cutting speed for an operation on a Lathe machine using the following information: Tool change time: Tool regrinds time: 3 min Machine running cost Re.0.50 per min Depreciation of tool regrinds Rs. 5.0 The constants in the tool life equation are 60 and 0.2 3 minarrow_forward
- Solve in 5 min corrarrow_forwardThe results of machining steel with two grades of tool material are given below: Taylor's Exponent Cutting speed for 1(one) minuto Tool A B tool life metres/min 100 120 0.20 0.25 (i) For a 400 minute tool life, which tool is recommended and why? (ii) The tool changing time for the preferred tool is 15 minutes which cutting speed has to be chosen from the available speeds 45 m/min; 5 m/min.arrow_forward1. Using the Taylor equation for tool wear and let: n = 0.3, calculate the percentage increase in tool life if the cutting speed is reduced by 30% and then increase it by 20%.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License