
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 35RQ
Explain how it can be that the tool wears when it may be four times as hard as the work material.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
oyfr
3. The figure shows a frame under the
influence of an external loading made up
of five forces and two moments. Use the
scalar method to calculate moments.
a. Write the resultant force of the
external loading in Cartesian vector
form.
b. Determine the
& direction
of the resultant moment of the
external loading about A.
15 cm
18 cm
2.2 N-m
B
50 N
45°
10 cm
48 N.m
250 N
60 N
20
21
50 N
25 cm
100 N
A
118,
27cm 5, 4:1
Assume the Link AO is the input and revolves 360°, determine a. the coordinates of limit positions of point B, b. the angles (AOC) corresponding to the limit positions
oyfr
3. The figure shows a frame under the
influence of an external loading made up
of five forces and two moments. Use the
scalar method to calculate moments.
a. Write the resultant force of the
external loading in Cartesian vector
form.
b. Determine the
& direction
of the resultant moment of the
external loading about A.
15 cm
18 cm
2.2 N-m
B
50 N
45°
10 cm
48 N.m
250 N
60 N
20
21
50 N
25 cm
100 N
A
118,
27cm 5, 4:1
Chapter 22 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 22 - For metal-cutting tools, what is the most...Ch. 22 - What is hot hardness compared to hardness?Ch. 22 - Prob. 3RQCh. 22 - Why is impact strength an important property in...Ch. 22 - Cemented carbide tools are made by a powder...Ch. 22 - What are the primary considerations in tool...Ch. 22 - What is the general strategy behind coated tools?Ch. 22 - Prob. 8RQCh. 22 - How is a CBN tool manufactured?Ch. 22 - Prob. 10RQ
Ch. 22 - Prob. 11RQCh. 22 - Discuss the constraints in the selection of a...Ch. 22 - What does cemented mean in the manufacture of...Ch. 22 - What advantage do ground carbide inserts have over...Ch. 22 - What is a chip groove?Ch. 22 - What is the DCL?Ch. 22 - Suppose you made four beams out of carbide, HSS,...Ch. 22 - Multiple coats or layers are put on the carbide...Ch. 22 - What tool material would you recommend for...Ch. 22 - What makes the process that makes TiC coatings for...Ch. 22 - Why does a TiN-coated tool consume less power than...Ch. 22 - For what work material are CBN tools more commonly...Ch. 22 - Why is CBN better for machining steel than...Ch. 22 - What is the typical coefficient of variation for...Ch. 22 - What is meant by the statement Tool life is a...Ch. 22 - The typical value of a coefficient of variation in...Ch. 22 - Machinability is defined in many ways. Explain how...Ch. 22 - What are the chief functions of cutting fluids?Ch. 22 - Prob. 29RQCh. 22 - Why is the PVD process used to coat HSS tools?Ch. 22 - Why is there no universal cutting tool material?Ch. 22 - What is an 18-4-1 HSS composed of?Ch. 22 - Over the years, tool materials have been developed...Ch. 22 - Why is the rigidity of the machine tool an...Ch. 22 - Explain how it can be that the tool wears when it...Ch. 22 - What is a honed edge on a cutting tool and why is...Ch. 22 - Suppose you have a turning operation using a tool...Ch. 22 - A 2 in.-diameter bar of steel was turned at 284...Ch. 22 - Prob. 3PCh. 22 - The following data have been obtained for...Ch. 22 - In the insert is set with a 0 side cutting-edge...Ch. 22 - Prob. 6PCh. 22 - Here is a single point tool. Identify angles A...Ch. 22 - Figure 22.B gives data for cutting speed and tool...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Suppose s is an object of the class Student. Base used in the following invocation? Explain your answer s.setSt...
Java: An Introduction to Problem Solving and Programming (8th Edition)
What risk does a programmer take when not placing a trailing else at the end of an if-else-if statement?
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Comprehension check 12-10
The preceding graph shows the ideal gas Jaw relationship (PV =nRT) between pressure (...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Also, find the angle .
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
What is a multitasking operating system?
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
You can use the for loop to iterate over the individual characters in a string.
Starting Out with Python (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 2-mass system shown below depicts a disk which rotates about its center and has rotational moment of inertia Jo and radius r. The angular displacement of the disk is given by 0. The spring with constant k₂ is attached to the disk at a distance from the center. The mass m has linear displacement & and is subject to an external force u. When the system is at equilibrium, the spring forces due to k₁ and k₂ are zero. Neglect gravity and aerodynamic drag in this problem. You may assume the small angle approximation which implies (i) that the springs and dampers remain in their horizontal / vertical configurations and (ii) that the linear displacement d of a point on the edge of the disk can be approximated by d≈re. Ө K2 www m 4 Cz 777777 Jo Make the following assumptions when analyzing the forces and torques: тв 2 0>0, 0>0, x> > 0, >0 Derive the differential equations of motion for this dynamic system. Start by sketching LARGE and carefully drawn free-body-diagrams for the disk and the…arrow_forwardA linear system is one that satisfies the principle of superposition. In other words, if an input u₁ yields the output y₁, and an input u2 yields the output y2, the system is said to be linear if a com- bination of the inputs u = u₁ + u2 yield the sum of the outputs y = y1 + y2. Using this fact, determine the output y(t) of the following linear system: given the input: P(s) = = Y(s) U(s) = s+1 s+10 u(t) = e−2+ sin(t) =earrow_forwardThe manometer fluid in the figure given below is mercury where D = 3 in and h = 1 in. Estimate the volume flow in the tube (ft3/s) if the flowing fluid is gasoline at 20°C and 1 atm. The density of mercury and gasoline are 26.34 slug/ft3 and 1.32 slug/ft3 respectively. The gravitational force is 32.2 ft/s2.arrow_forward
- Using the Bernoulli equation to find the general solution. If an initial condition is given, find the particular solution. y' + xy = xy¯¹, y(0) = 3arrow_forwardTest for exactness. If exact, solve. If not, use an integrating factor as given or obtained by inspection or by the theorems in the text. a. 2xydx+x²dy = 0 b. (x2+y2)dx-2xydy = 0 c. 6xydx+5(y + x2)dy = 0arrow_forwardNewton's law of cooling. A thermometer, reading 5°C, is brought into a room whose temperature is 22°C. One minute later the thermometer reading is 12°C. How long does it take until the reading is practically 22°C, say, 21.9°C?arrow_forward
- Solve a. y' + 2xy = ex-x² b. y' + y sin x = ecosx, y(0) = −1 y(0) = −2.5arrow_forward= MMB 241 Tutorial 3.pdf 2/6 90% + + 5. The boat is traveling along the circular path with a speed of v = (0.0625t²) m/s, where t is in seconds. Determine the magnitude of its acceleration when t = 10 s. 40 m v = 0.0625² 6. If the motorcycle has a deceleration of at = (0.001s) m/s² and its speed at position A is 25 m/s, determine the magnitude of its acceleration when it passes point B. .A 90° 300 m n B 2arrow_forward= MMB 241 Tutorial 3.pdf 4/6 67% + 9. The car is traveling along the road with a speed of v = (2 s) m/s, where s is in meters. Determine the magnitude of its acceleration when s = 10 m. v = (2s) m/s 50 m 10. The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t 3/2) rad, where t is in seconds. A ball rolls outward along the radial groove so that its position is r = (0.1+³) m, where t is in seconds. Determine the magnitudes of the velocity and acceleration of the ball when t = 1.5s.arrow_forward
- The population of a certain country is known to increase at a rate proportional to the number of people presently living in the country. If after two years the population has doubled, and after three years the population is 20,000, estimate the number of people initially living in the country.arrow_forward= MMB 241 Tutorial 3.pdf 6/6 100% + | 日 13. The slotted link is pinned at O, and as a result of the constant angular velocity *= 3 rad/s it drives the peg P for a short distance along the spiral guide r = (0.40) m, where 0 is in radians. Determine the radial and transverse components of the velocity and acceleration of P at the instant = 1/3 rad. 0.5 m P r = 0.40 =3 rad/sarrow_forward= MMB 241 Tutorial 3.pdf 1/6 90% + DYNAMICS OF PARTICLES (MMB 241) Tutorial 3 Topic: Kinematics of Particles:- Path and Polar coordinate systems and general curvilinear QUESTIONS motion. 1. Determine the acceleration at s = 2 m if v = (2 s) m/s², where s is in meters. At s = 0, v = 1 m/s. 3 m 2. Determine the acceleration when t=1s if v = (4t2+2) m/s, where t is in seconds. v=(4²+2) m/s 6 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning

Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY