Concept explainers
Two particles, each of positive charge q, are fixed in place on a y axis, one at y = d and the other at y = –d. (a) Write an expression that gives the magnitude E of the net electric field at points on the x axis given by x = αd. (b) Graph E versus a for the range 0 <α < 4. From the graph, determine the values of α that give (c) the maximum value of E and (d) half the maximum value of E.
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Microbiology: An Introduction
College Physics: A Strategic Approach (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Human Anatomy & Physiology (Marieb, Human Anatomy & Physiology) Standalone Book
Campbell Biology (11th Edition)
- A charge of q = 2.00 109 G is spread evenly on a thin metal disk of radius 0.200 m. (a) Calculate the charge density on the disk. (b) Find the magnitude of the electric field just above the center of the disk, neglecting edge effects and assuming a uniform distribution of charge.arrow_forwardTwo solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forward(a) Find the total electric field at x = 1.00 cm in Figure 18.52(b) given that q =5.00 nC. (b) Find the total electric field at x = 11.00 cm in Figure 18.52(b). (c) If the charges are allowed to move and eventually be brought to rest by friction, what will the final charge configuration be? (That is, will there be a single charge, double charge; etc., and what will its value(s) he?)arrow_forward
- A thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forwardFind an expression for the magnitude of the electric field at point A mid-way between the two rings of radius R shown in Figure P24.30. The ring on the left has a uniform charge q1 and the ring on the right has a uniform charge q2. The rings are separated by distance d. Assume the positive x axis points to the right, through the center of the rings. FIGURE P24.30 Problems 30 and 31.arrow_forwardThe electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forward
- Why is the following situation impossible? A solid copper sphere of radius 15.0 cm is in electrostatic equilibrium and carries a charge of 40.0 nC. Figure P24.30 shows the magnitude of the electric field as a function of radial position r measured from the center of the sphere. Figure P24.30arrow_forwardA solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge Q. Concentric with this sphere is an uncharged, conducting, hollow sphere whose inner and outer radii are b and c as shown in Figure P19.75. We wish to understand completely the charges and electric fields at all locations. (a) Find the charge contained within a sphere of radius r a. (b) From this value, find the magnitude of the electric field for r a. (c) What charge is contained within a sphere of radius r when a r b? (d) From this value, find the magnitude of the electric field for r when a r b. (e) Now consider r when b r c. What is the magnitude of the electric field for this range of values of r? (f) From this value, what must be the charge on the inner surface of the hollow sphere? (g) From part (f), what must be the charge on the outer surface of the hollow sphere? (h) Consider the three spherical surfaces of radii a, b, and c. Which of these surfaces has the largest magnitude of surface charge density?arrow_forwarda. Figure 24.22A shows a rod of length L and radius R with excess positive charge Q. The excess charge is uniformly distributed over the entire outside surface of the rod. Write an expression for the surface charge density . Write an expression in terms of for the amount of charge dq contained in a small segment of the rod of length dx. b. Figure 24.22B shows a very narrow rod of length L with excess positive charge Q. The rod is so narrow compared to its length that its radius is negligible and the rod is essentially one-dimensional. The excess charge is uniformly distributed over the length of the rod. Write an expression for the linear charge density . Write an expression in terms of for the amount of charge dq contained in a small segment of the rod of length dx. Compare your answers with those for part (a). Explain the similarities and differences.arrow_forward
- A charged rod is curved so that it is part of a circle of radius R (Fig. P24.32). The excess positive charge Q is uniformly distributed on the rod. Find an expression for the electric field at point A in the plane of the curved rod in terms of the parameters given in the figure.arrow_forwardFIGURE P25.41 Problems 51 and 52. Find the surface charge density of a sheet of charge that would produce the same electric field as that of a very large flat slab of uniform charge density = 2.00 C/m3 and thickness 2t = 5.00 cm (Fig. P25.51).arrow_forwardThe electric field at a point on the perpendicular bisector of a charged rod was calculated as the first example of a continuous charge distribution, resulting in Equation 24.15:E=kQy12+y2j a. Find an expression for the electric field when the rod is infinitely long. b. An infinitely long rod with uniform linear charge density also contains an infinite amount of charge. Explain why this still produces an electric field near the rod that is finite.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College