Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 61P
Find an expression for the oscillation frequency of an electric dipole of dipole moment p and relational inertia I for small amplitudes of oscillation abort its equilibrium position in a uniform electric field of magnitude E.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find an expression for the oscillation frequency of an electric dipole of dipole moment and rotational inertia I for small amplitudes of oscillation about its equilibrium position in a uniform electric field of magnitude E.
Consider an electric dipole in free space located at the coordinates origin where dipole moment is pointing in
the positive z-axis direction. If the voltage due to this dipole is 0.6 V at the point (r, 0, 4)=(0.2m, 2.4rad,
0.9rad),
Dipole moment p in pC.m is:
One possible correct answer is: -3.6163403761983
Corresponding electric field components in V/m are:
10
EX
One possible correct answer is: 6
10
One possible correct answer is: -2.7480428690202
10
One possible correct answer is: 0
YA
Q
K
A square parallel plate capacitor with side length l = 30cm and thickness
d = 1mm, has charge Q = 6µC shown in the figure. The capacitor is separated
from the battery. The insulator with dielectric constant K =
direction by the applied external force of F. Find the expression of the force F as a
function of x for the interval 0 sx
Chapter 22 Solutions
Fundamentals of Physics Extended
Ch. 22 - Figure 22-22 shows three arrangements of electric...Ch. 22 - Figure 22-23 shows two square arrays of charged...Ch. 22 - In Fig. 22-24, two particles of charge q are...Ch. 22 - Figure 22-25 shows four situations in which four...Ch. 22 - Figure 22-26 shows two charged particles fixed in...Ch. 22 - In Fig. 22-27, two identical circular...Ch. 22 - The potential energies associated with four...Ch. 22 - a In Checkpoint 4, if the dipole rotates from...Ch. 22 - Figure 22-28 shows two disks and a flat ring, each...Ch. 22 - In Fig. 22-29, an electron e travels through a...
Ch. 22 - In Fig. 22-30a, a circular plastic rod with...Ch. 22 - When three electric dipoles ire near each other,...Ch. 22 - Figure 22-32 shows three rods, each with the same...Ch. 22 - Figure 22-33 shows five protons that are launched...Ch. 22 - Sketch qualitatively the electric field lines both...Ch. 22 - In Fig. 22-34 the electric field lines on the left...Ch. 22 - SSM The nucleus of a plutonium-239 atom contains...Ch. 22 - Two charged particles are attached to an x axis:...Ch. 22 - SSM A charged particle produces an electric Held...Ch. 22 - What is the magnitude of a point charge that would...Ch. 22 - SSM ILW WWW In Fig. 22-35, the four particles form...Ch. 22 - GO In Fig. 22-36, the four particles are fixed in...Ch. 22 - GO Figure 22-37 shows two charged particles on an...Ch. 22 - GO Figure 22-38a shows two charged particles fixed...Ch. 22 - SSM Two charged particles are fixed to x axis:...Ch. 22 - GO Figure 22-39 shows an uneven arrangement of...Ch. 22 - GO Figure 22-40 shows a proton on the central...Ch. 22 - In Fig. 22-41, particle 1 of charge q1 = 5.00q and...Ch. 22 - In Fig. 22-42, the three particles are fixed in...Ch. 22 - Figure 22-43 shows a plastic ring of radius R =...Ch. 22 - Two charged beads are on the plastic ring in Fig....Ch. 22 - The electric field of an electric dipole along the...Ch. 22 - Figure 22-45 shows an electric dipole. What are...Ch. 22 - Equations 22-8 and 22-9 are approximations of the...Ch. 22 - SSM Electric quadrupole. Figure 22-46 shows a...Ch. 22 - Density, density, density. a A charge 300e is...Ch. 22 - Figure 22-47 shows two parallel nonconducting...Ch. 22 - A thin nonconducting rod with a uniform...Ch. 22 - Figure 22-49 shows three circular arcs centered on...Ch. 22 - GO ILW In Fig. 22-50, a thin glass rod forms a...Ch. 22 - GO In Fig, 22-51, two curved plastic rods, one of...Ch. 22 - Charge is uniformly distributed around a ring of...Ch. 22 - GO Figure 22-52a shows a nonconducting rod with a...Ch. 22 - GO Figure 22-53 shows two concentric rings, of...Ch. 22 - SSM ILW WWW In Fig. 22-54, a nonconducting rod of...Ch. 22 - GO In Fig. 22-55, positive charge q = 7.81 pC is...Ch. 22 - GO In Fig. 22-56, a semi-infinite nonconducting...Ch. 22 - A disk of radius 2.5 cm has a surface charge...Ch. 22 - SSM WWW At what distance along the central...Ch. 22 - A circular plastic disk with radius R = 2.00 cm...Ch. 22 - Suppose you design an apparatus in which a...Ch. 22 - Figure 22-58a shows a circular disk that is...Ch. 22 - In Millikans experiment, an oil drop of radius...Ch. 22 - GO An electron with a speed of 5.00 108 cm/s...Ch. 22 - SSM A charged cloud system produces an electric...Ch. 22 - Humid air breaks down its molecules become ionized...Ch. 22 - SSM An electron is released from rest in a uniform...Ch. 22 - An alpha particle the nucleus of a helium atom has...Ch. 22 - ILW An electron on the axis of an electric dipole...Ch. 22 - An electron is accelerated eastward at 1.80 ...Ch. 22 - SSM Beams of high-speed protons can be produced in...Ch. 22 - In Fig. 22-59, an electron e is to be released...Ch. 22 - A 10.0 g block with a charge of 8.00 10-5 C is...Ch. 22 - At some instant the velocity components of an...Ch. 22 - Assume that a honeybee is a sphere of diameter...Ch. 22 - An electron eaters a region of uniform electric...Ch. 22 - GO Two large parallel copper plates are 5.0 cm...Ch. 22 - GO In Fig. 22-61, an electron is shot at an...Ch. 22 - ILW A uniform electric field exists in a region...Ch. 22 - An electric dipole consists of charges 2e and -2e...Ch. 22 - SSM An electric dipole consisting of charges of...Ch. 22 - A certain electric dipole is placed in a uniform...Ch. 22 - How much work is required to turn an electric...Ch. 22 - A certain electric dipole is placed in a uniform...Ch. 22 - Find an expression for the oscillation frequency...Ch. 22 - a What is the magnitude of an electrons...Ch. 22 - A spherical water drop 1.20 m in diameter is...Ch. 22 - Three particles, each with positive charge Q, form...Ch. 22 - In Fig. 22-64a, a particle of charge Q produces an...Ch. 22 - A proton and an electron form two comers of an...Ch. 22 - A charge uniform linear density = 9.0 nC/m lies on...Ch. 22 - In Fig. 22-65, eight particles form a square in...Ch. 22 - Two particles, each with a charge of magnitude 12...Ch. 22 - The following table gives the charge seen by...Ch. 22 - A charge of 20 nC is uniformly distributed along a...Ch. 22 - An electron is constrained to the central axis of...Ch. 22 - SSM The electric field in an xy plane produced by...Ch. 22 - a What total excess charge q must the disk in Fig....Ch. 22 - In Fig. 22-66, particle 1 of charge 1.00 C,...Ch. 22 - In Fig. 22-67, an electric dipole swings from an...Ch. 22 - A particle of charge q1 is at the origin of an x...Ch. 22 - Two particles, each of positive charge q, are...Ch. 22 - A clock face has negative point charges q, 2q,...Ch. 22 - Calculate the electric dipole moment of an...Ch. 22 - An electric field E with an average magnitude of...Ch. 22 - A circular rod has a radius of curvature R = 9.00...Ch. 22 - SSM An electric dipole with dipole moment p= 3.00 ...Ch. 22 - In Fig. 22-68, a uniform, upward electric field E...Ch. 22 - For the data of Problem 70, assume that the charge...Ch. 22 - In Fig. 22-66, particle 1 of charge 2.00 pC,...Ch. 22 - In Fig. 22-69, particle 1 of charge q1 = 1.00pC...
Additional Science Textbook Solutions
Find more solutions based on key concepts
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
8. A classic way to isolate thymidylate synthase—negative mutants of bacteria is to treat a growing culture wit...
Biochemistry: Concepts and Connections (2nd Edition)
55. Three identical train cars, coupled together, are rolling east at 2.0 m/s. A fourth car traveling east at 4...
College Physics: A Strategic Approach (3rd Edition)
Which types of cell junctions are found in epithelial tissue?
Principles of Anatomy and Physiology
9. A pendulum is made by tying a 500 g ball to a 75-cm-long string. The pendulum is pulled 30° to one side, the...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A water molecule is made up of two hydrogen atoms and one oxygen atom, with a total of 10 electrons and 10 protons. The molecule is modeled as a dipole with an effective separation d = 3.9 1012 m between its positive and negative charges. What is the magnitude of the water molecules dipole moment?arrow_forwardAn electron and a proton, each starting from rest, are accelerated by the same uniform electric field of 200 N/C. Determine the distance and time for each particle to acquire a kinetic energy of 3.21016 J.arrow_forwardFind an expression for the electric field at point A for the dipole source shown in Figure P24.17. Show that when y : d, the electric field is given by Ekp/y3.arrow_forward
- Calculate the electric field due to a uniformly charged rod of length L, aligned with the x-axis with one end at the origin; at a point P on the z-axis.arrow_forwardCalculate the angular velocity of an electron orbiting a proton in the hydrogen atom, given the radius of the orbit is 0.5301010 m. You may assume that the proton is stationary and the centripetal force is supplied by Coulomb attraction.arrow_forwardThe figure shows four orientations of an electric dipole in an external field. For each of the four dipoles, give the angle between the p vector (dipole moment) and the E vector (electric field vector) that is used in the formula for torque: torque = p E sin (phi) where phi is the angle between the p and E vectors. For example, how do you know if you use theta or 180 - theta for orientation (1); do you use theta or negative theta for orientation 4?arrow_forward
- The accompanying graph depicts the interaction energy between two water molecules situated so that their dipole moments are parallel and pointing in the same direction. Sketch an approximate curve for the interaction between two water molecules oriented with antiparallel dipole moments.arrow_forwardYA Q K F A Square parallel plate capacitor with side length I = 20cm and thickness d = 1mm, has charge Q = 9µC shown in the figure . The capacitor is separated from the battery. The insulator with dielectric constant K = 5 pulled out in the +x direction by the applied external force of F. Find the expression of the force F as a function of x for the interval 0arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q. The electric field E at a radial distance r from the central axis is given by the function:arrow_forwardIn the figure below, determine the point (other than infinity) at which the electric field is zero. (Let q, = -1.65 µC and q2 = 6.90 µc.) -1.00 m-arrow_forwardShow that the energy of an ideal dipole p in an external electric field E is U = -p E Start by calculating the energy of a physical dipole of charges +ą separated by a displacement a, with p qa. Then take the limit a → 0, q + o with qa constant (equal to p).arrow_forwardA capacitor with interlayer distance d and surface area A (LxL=A) has a charge Q and the capacitor is not connected to the source. In this case, when an insulating rod with pediment d and dielectric coefficient K is inserted x (x<L) from one end, what is the direction (inside or outside of the capacitor) and magnitude of the electrostatic force acting on the rod?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY