Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 62P
(a) What is the magnitude of an electron’s acceleration in a uniform electric field of magnitude 1.40 × 106 N/C? (b) How long would the election take, starting from rest, to attain one-tenth the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At some instant the velocity components of an electron moving between two charged parallel plates are v, -1.7x105 m/s and
vy-3.5x10³ m/s. Suppose the electric field between the plates is uniform and given by E = (120N/C). In unit-vector notation,
what are (a) the electron's acceleration in that field and (b) the electron's velocity when its x coordinate has changed by 2.5 cm?
-13.
(a)(i
(b)(
At some instant the velocity components of an electron moving between two charged parallel plates are vx-1.6×105 m/s and
vy-3.3x10³ m/s. Suppose the electric field between the plates is uniform and given by E = (120N/C).1
. In unit-vector notation,
what are (a) the electron's acceleration in that field and (b) the electron's velocity when its x coordinate has changed by 2.2 cm?
(a)(i
- )j.
At some instant the velocity components of an electron moving between two charged parallel plates are vx=1.6×105 m/s and
vy-3.4x10³ m/s. Suppose the electric field between the plates is uniform and given by E
what are (a) the electron's acceleration in that field and (b) the electron's velocity when its x coordinate has changed by 2.1 cm?
120N/C). In unit-vector notation,
(a)(i
(b)(i
~)J.
✓ )it(
i
THIN
OF
Chapter 22 Solutions
Fundamentals of Physics Extended
Ch. 22 - Figure 22-22 shows three arrangements of electric...Ch. 22 - Figure 22-23 shows two square arrays of charged...Ch. 22 - In Fig. 22-24, two particles of charge q are...Ch. 22 - Figure 22-25 shows four situations in which four...Ch. 22 - Figure 22-26 shows two charged particles fixed in...Ch. 22 - In Fig. 22-27, two identical circular...Ch. 22 - The potential energies associated with four...Ch. 22 - a In Checkpoint 4, if the dipole rotates from...Ch. 22 - Figure 22-28 shows two disks and a flat ring, each...Ch. 22 - In Fig. 22-29, an electron e travels through a...
Ch. 22 - In Fig. 22-30a, a circular plastic rod with...Ch. 22 - When three electric dipoles ire near each other,...Ch. 22 - Figure 22-32 shows three rods, each with the same...Ch. 22 - Figure 22-33 shows five protons that are launched...Ch. 22 - Sketch qualitatively the electric field lines both...Ch. 22 - In Fig. 22-34 the electric field lines on the left...Ch. 22 - SSM The nucleus of a plutonium-239 atom contains...Ch. 22 - Two charged particles are attached to an x axis:...Ch. 22 - SSM A charged particle produces an electric Held...Ch. 22 - What is the magnitude of a point charge that would...Ch. 22 - SSM ILW WWW In Fig. 22-35, the four particles form...Ch. 22 - GO In Fig. 22-36, the four particles are fixed in...Ch. 22 - GO Figure 22-37 shows two charged particles on an...Ch. 22 - GO Figure 22-38a shows two charged particles fixed...Ch. 22 - SSM Two charged particles are fixed to x axis:...Ch. 22 - GO Figure 22-39 shows an uneven arrangement of...Ch. 22 - GO Figure 22-40 shows a proton on the central...Ch. 22 - In Fig. 22-41, particle 1 of charge q1 = 5.00q and...Ch. 22 - In Fig. 22-42, the three particles are fixed in...Ch. 22 - Figure 22-43 shows a plastic ring of radius R =...Ch. 22 - Two charged beads are on the plastic ring in Fig....Ch. 22 - The electric field of an electric dipole along the...Ch. 22 - Figure 22-45 shows an electric dipole. What are...Ch. 22 - Equations 22-8 and 22-9 are approximations of the...Ch. 22 - SSM Electric quadrupole. Figure 22-46 shows a...Ch. 22 - Density, density, density. a A charge 300e is...Ch. 22 - Figure 22-47 shows two parallel nonconducting...Ch. 22 - A thin nonconducting rod with a uniform...Ch. 22 - Figure 22-49 shows three circular arcs centered on...Ch. 22 - GO ILW In Fig. 22-50, a thin glass rod forms a...Ch. 22 - GO In Fig, 22-51, two curved plastic rods, one of...Ch. 22 - Charge is uniformly distributed around a ring of...Ch. 22 - GO Figure 22-52a shows a nonconducting rod with a...Ch. 22 - GO Figure 22-53 shows two concentric rings, of...Ch. 22 - SSM ILW WWW In Fig. 22-54, a nonconducting rod of...Ch. 22 - GO In Fig. 22-55, positive charge q = 7.81 pC is...Ch. 22 - GO In Fig. 22-56, a semi-infinite nonconducting...Ch. 22 - A disk of radius 2.5 cm has a surface charge...Ch. 22 - SSM WWW At what distance along the central...Ch. 22 - A circular plastic disk with radius R = 2.00 cm...Ch. 22 - Suppose you design an apparatus in which a...Ch. 22 - Figure 22-58a shows a circular disk that is...Ch. 22 - In Millikans experiment, an oil drop of radius...Ch. 22 - GO An electron with a speed of 5.00 108 cm/s...Ch. 22 - SSM A charged cloud system produces an electric...Ch. 22 - Humid air breaks down its molecules become ionized...Ch. 22 - SSM An electron is released from rest in a uniform...Ch. 22 - An alpha particle the nucleus of a helium atom has...Ch. 22 - ILW An electron on the axis of an electric dipole...Ch. 22 - An electron is accelerated eastward at 1.80 ...Ch. 22 - SSM Beams of high-speed protons can be produced in...Ch. 22 - In Fig. 22-59, an electron e is to be released...Ch. 22 - A 10.0 g block with a charge of 8.00 10-5 C is...Ch. 22 - At some instant the velocity components of an...Ch. 22 - Assume that a honeybee is a sphere of diameter...Ch. 22 - An electron eaters a region of uniform electric...Ch. 22 - GO Two large parallel copper plates are 5.0 cm...Ch. 22 - GO In Fig. 22-61, an electron is shot at an...Ch. 22 - ILW A uniform electric field exists in a region...Ch. 22 - An electric dipole consists of charges 2e and -2e...Ch. 22 - SSM An electric dipole consisting of charges of...Ch. 22 - A certain electric dipole is placed in a uniform...Ch. 22 - How much work is required to turn an electric...Ch. 22 - A certain electric dipole is placed in a uniform...Ch. 22 - Find an expression for the oscillation frequency...Ch. 22 - a What is the magnitude of an electrons...Ch. 22 - A spherical water drop 1.20 m in diameter is...Ch. 22 - Three particles, each with positive charge Q, form...Ch. 22 - In Fig. 22-64a, a particle of charge Q produces an...Ch. 22 - A proton and an electron form two comers of an...Ch. 22 - A charge uniform linear density = 9.0 nC/m lies on...Ch. 22 - In Fig. 22-65, eight particles form a square in...Ch. 22 - Two particles, each with a charge of magnitude 12...Ch. 22 - The following table gives the charge seen by...Ch. 22 - A charge of 20 nC is uniformly distributed along a...Ch. 22 - An electron is constrained to the central axis of...Ch. 22 - SSM The electric field in an xy plane produced by...Ch. 22 - a What total excess charge q must the disk in Fig....Ch. 22 - In Fig. 22-66, particle 1 of charge 1.00 C,...Ch. 22 - In Fig. 22-67, an electric dipole swings from an...Ch. 22 - A particle of charge q1 is at the origin of an x...Ch. 22 - Two particles, each of positive charge q, are...Ch. 22 - A clock face has negative point charges q, 2q,...Ch. 22 - Calculate the electric dipole moment of an...Ch. 22 - An electric field E with an average magnitude of...Ch. 22 - A circular rod has a radius of curvature R = 9.00...Ch. 22 - SSM An electric dipole with dipole moment p= 3.00 ...Ch. 22 - In Fig. 22-68, a uniform, upward electric field E...Ch. 22 - For the data of Problem 70, assume that the charge...Ch. 22 - In Fig. 22-66, particle 1 of charge 2.00 pC,...Ch. 22 - In Fig. 22-69, particle 1 of charge q1 = 1.00pC...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. Acceptance of Einsteins theory of grav...
Cosmic Perspective Fundamentals
Using Table 8.1 as a guide, select the three ways that are easiest for you to distinguish a female from a male ...
Principles of Anatomy and Physiology
DRAW IT Pea plants heterozygous for flower position and stem length (AaTt) are allowed to self-pollinate, and ...
Campbell Biology (11th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
1. Which is a function of the skeletal system? (a) support, (b) hematopoietic site, (c) storage, (d) providing ...
Anatomy & Physiology (6th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the magnitude of the electric field due to a charged particle at its exact location (r = 0)?arrow_forwardAt some instant the velocity components of an electron moving between two charged parallel plates are vx = 1.5 * 10^5 m/s and vy =3.0 * 10^3 m/s. Suppose the electric field between the plates is uniform and given by E: = (120 N/C)jˆ . In unit-vector notation, what are (a) the electron’s acceleration in that field and (b) the electron’s velocity when its x coordinate has changed by 2.0 cm?arrow_forwardA proton accelerates from rest in a uniform electric field of 640 N/C. At one later moment, its speed is 1.20Mm/s (non relativistic because v is much less than the speed of light). (a) Find the acceleration of the proton. (b) Over what time interval does the proton reach this speed? (c) How far does it move in this time interval? (d) What is its kinetic energy at the end of this interval?arrow_forward
- At some instant the velocity components of an electron moving between two charged parallel plates are v. and vy. Suppose the electric field between the plates is E (it is uniform and points only in the y direction). NOTE: Express your answers in terms of the given variables, using e for the fundamental charge and me for the mass of an electron. (a) What is the magnitude of the acceleration of the electron? E a= X me (b) What is the y-component of electron's velocity when its x coordinate has changed by a distance d? Ed Vd=vy + X Ux mearrow_forward(a) What is the magnitude of an electron’s acceleration in a uniform electric field of magnitude 1.40 * 10^6 N/C? (b) How long would the electron take, starting from rest, to attain one-tenth the speed of light? (c) How far would it travel in that time?arrow_forward(For a electron) moves horizontally with a speed of 1.55 X 10^6 m/s between two horizontal parallel plates(positive plate is on top). The plates have a length of 11.9 cm, and a plate separation that allows a charged particle to escape even after being deflected. The magnitude of the electric field within the plates is 155 N/C. Calculate the final velocity of an electron as it leaves the plates.arrow_forward
- At some instant the velocity components of an electron moving between two charged parallel plates are v, 1.8x105 m/s and v 3.9x10 m/s. Suppose the electric field between the plates is uniform and given by E = (120N/C). In unit-vector notation, what are (a) the electron's acceleration in that field and (b) the electron's velocity when its x coordinate has changed by 2.4 cm? T (b) ( How much work is required to turn an electric dipole 180° in a uniform electric field of magnitude 33.7 N/C if p-2.28 x 1025 C-m and the initial angle is 32.9° Number 90 Unitsarrow_forwardAn electron enters the region of a uniform electric field as shown, with υi = 3.00 x 106 m/s and E = 200 N/C. The horizontal length of the plates is ℓ = 0.100 m.(A) Find the acceleration of the electron while it is in the electric field. (B) Assuming the electron enters the field at time t = 0, find the time at which it leaves the field. (C) Assuming the vertical position of the electron as it enters the field is yi = 0, what is its vertical position when it leaves the field?arrow_forwardphyarrow_forward
- A particle (mass = 17 g, charge = 49 milli-C) moves in a region of space where the electric field is uniform and is given by Ex = 4.4 N/C, E, = E, = 0. If the velocity of the particle at t = 0 is given by vy= %3D 46 m/s, vx = Vz = 0, what is the speed of the particle at t = 3 s?arrow_forwardAn electron with speed v0 = 3388829.6m/s travels parallel to and along the same direction as an electric field of magnitude E = 3154N/C. (a) How far will the electron travel before it stops? Answer in SI units and multiply your answer by 10^2. (b) How much time will elapse before it returns to its starting point? Answer in SI units and multiply your answer by 10^8.arrow_forwardTwo parallel conductor plates spaced d = 2 cm which are negatively charged (top) and positively charged (bottom) produce a uniform electric field inside of 3000 N/C. An electron is fired from the left end of the positive plate at an angle of 45 degrees with an initial velocity of 6x10⁶ m/s. If the length of the plate is 10 cm, a) Will the electron hit one of the plates? b) If yes, which plate did the electron strike and where?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY