Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 35P
SSM WWW At what distance along the central perpendicular axis of a uniformly charged plastic disk of radius 0.600 m is the magnitude of the electric field equal to one-half the magnitude of the field at the center of the surface of the disk?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At what distance along the central axis of a uniformly charged plastic disk of radius R = 1.31 m is the magnitude of the electric field equal to 1/3 times the magnitude of the field at the center of the surface of the disk?
At what distance along the central perpendicular axis of a uniformly charged plastic disk of radius 0.600 m is the magnitude of the electric field equal to one-half the magnitude of the field at the center of the surface of the disk?
A long straight conducting cable (cylindrical in shape like a long straight wire) has a radius of a = 0.5 cm. At a perpendicular distance of r = 3 cm
from the center of the cable, the electric field has a magnitude of 7 N/C, and is directed radially inward. How much charge per unit length (in C/m)
exists on the cable?
Chapter 22 Solutions
Fundamentals of Physics Extended
Ch. 22 - Figure 22-22 shows three arrangements of electric...Ch. 22 - Figure 22-23 shows two square arrays of charged...Ch. 22 - In Fig. 22-24, two particles of charge q are...Ch. 22 - Figure 22-25 shows four situations in which four...Ch. 22 - Figure 22-26 shows two charged particles fixed in...Ch. 22 - In Fig. 22-27, two identical circular...Ch. 22 - The potential energies associated with four...Ch. 22 - a In Checkpoint 4, if the dipole rotates from...Ch. 22 - Figure 22-28 shows two disks and a flat ring, each...Ch. 22 - In Fig. 22-29, an electron e travels through a...
Ch. 22 - In Fig. 22-30a, a circular plastic rod with...Ch. 22 - When three electric dipoles ire near each other,...Ch. 22 - Figure 22-32 shows three rods, each with the same...Ch. 22 - Figure 22-33 shows five protons that are launched...Ch. 22 - Sketch qualitatively the electric field lines both...Ch. 22 - In Fig. 22-34 the electric field lines on the left...Ch. 22 - SSM The nucleus of a plutonium-239 atom contains...Ch. 22 - Two charged particles are attached to an x axis:...Ch. 22 - SSM A charged particle produces an electric Held...Ch. 22 - What is the magnitude of a point charge that would...Ch. 22 - SSM ILW WWW In Fig. 22-35, the four particles form...Ch. 22 - GO In Fig. 22-36, the four particles are fixed in...Ch. 22 - GO Figure 22-37 shows two charged particles on an...Ch. 22 - GO Figure 22-38a shows two charged particles fixed...Ch. 22 - SSM Two charged particles are fixed to x axis:...Ch. 22 - GO Figure 22-39 shows an uneven arrangement of...Ch. 22 - GO Figure 22-40 shows a proton on the central...Ch. 22 - In Fig. 22-41, particle 1 of charge q1 = 5.00q and...Ch. 22 - In Fig. 22-42, the three particles are fixed in...Ch. 22 - Figure 22-43 shows a plastic ring of radius R =...Ch. 22 - Two charged beads are on the plastic ring in Fig....Ch. 22 - The electric field of an electric dipole along the...Ch. 22 - Figure 22-45 shows an electric dipole. What are...Ch. 22 - Equations 22-8 and 22-9 are approximations of the...Ch. 22 - SSM Electric quadrupole. Figure 22-46 shows a...Ch. 22 - Density, density, density. a A charge 300e is...Ch. 22 - Figure 22-47 shows two parallel nonconducting...Ch. 22 - A thin nonconducting rod with a uniform...Ch. 22 - Figure 22-49 shows three circular arcs centered on...Ch. 22 - GO ILW In Fig. 22-50, a thin glass rod forms a...Ch. 22 - GO In Fig, 22-51, two curved plastic rods, one of...Ch. 22 - Charge is uniformly distributed around a ring of...Ch. 22 - GO Figure 22-52a shows a nonconducting rod with a...Ch. 22 - GO Figure 22-53 shows two concentric rings, of...Ch. 22 - SSM ILW WWW In Fig. 22-54, a nonconducting rod of...Ch. 22 - GO In Fig. 22-55, positive charge q = 7.81 pC is...Ch. 22 - GO In Fig. 22-56, a semi-infinite nonconducting...Ch. 22 - A disk of radius 2.5 cm has a surface charge...Ch. 22 - SSM WWW At what distance along the central...Ch. 22 - A circular plastic disk with radius R = 2.00 cm...Ch. 22 - Suppose you design an apparatus in which a...Ch. 22 - Figure 22-58a shows a circular disk that is...Ch. 22 - In Millikans experiment, an oil drop of radius...Ch. 22 - GO An electron with a speed of 5.00 108 cm/s...Ch. 22 - SSM A charged cloud system produces an electric...Ch. 22 - Humid air breaks down its molecules become ionized...Ch. 22 - SSM An electron is released from rest in a uniform...Ch. 22 - An alpha particle the nucleus of a helium atom has...Ch. 22 - ILW An electron on the axis of an electric dipole...Ch. 22 - An electron is accelerated eastward at 1.80 ...Ch. 22 - SSM Beams of high-speed protons can be produced in...Ch. 22 - In Fig. 22-59, an electron e is to be released...Ch. 22 - A 10.0 g block with a charge of 8.00 10-5 C is...Ch. 22 - At some instant the velocity components of an...Ch. 22 - Assume that a honeybee is a sphere of diameter...Ch. 22 - An electron eaters a region of uniform electric...Ch. 22 - GO Two large parallel copper plates are 5.0 cm...Ch. 22 - GO In Fig. 22-61, an electron is shot at an...Ch. 22 - ILW A uniform electric field exists in a region...Ch. 22 - An electric dipole consists of charges 2e and -2e...Ch. 22 - SSM An electric dipole consisting of charges of...Ch. 22 - A certain electric dipole is placed in a uniform...Ch. 22 - How much work is required to turn an electric...Ch. 22 - A certain electric dipole is placed in a uniform...Ch. 22 - Find an expression for the oscillation frequency...Ch. 22 - a What is the magnitude of an electrons...Ch. 22 - A spherical water drop 1.20 m in diameter is...Ch. 22 - Three particles, each with positive charge Q, form...Ch. 22 - In Fig. 22-64a, a particle of charge Q produces an...Ch. 22 - A proton and an electron form two comers of an...Ch. 22 - A charge uniform linear density = 9.0 nC/m lies on...Ch. 22 - In Fig. 22-65, eight particles form a square in...Ch. 22 - Two particles, each with a charge of magnitude 12...Ch. 22 - The following table gives the charge seen by...Ch. 22 - A charge of 20 nC is uniformly distributed along a...Ch. 22 - An electron is constrained to the central axis of...Ch. 22 - SSM The electric field in an xy plane produced by...Ch. 22 - a What total excess charge q must the disk in Fig....Ch. 22 - In Fig. 22-66, particle 1 of charge 1.00 C,...Ch. 22 - In Fig. 22-67, an electric dipole swings from an...Ch. 22 - A particle of charge q1 is at the origin of an x...Ch. 22 - Two particles, each of positive charge q, are...Ch. 22 - A clock face has negative point charges q, 2q,...Ch. 22 - Calculate the electric dipole moment of an...Ch. 22 - An electric field E with an average magnitude of...Ch. 22 - A circular rod has a radius of curvature R = 9.00...Ch. 22 - SSM An electric dipole with dipole moment p= 3.00 ...Ch. 22 - In Fig. 22-68, a uniform, upward electric field E...Ch. 22 - For the data of Problem 70, assume that the charge...Ch. 22 - In Fig. 22-66, particle 1 of charge 2.00 pC,...Ch. 22 - In Fig. 22-69, particle 1 of charge q1 = 1.00pC...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. What is the different between ionic bonding and covalent bonding?
Introductory Chemistry (6th Edition)
Sketch the following spectra that would be obtained for 2-chloroethanol: a. The 1H NMR spectrum for an anhydrou...
Organic Chemistry (8th Edition)
3. Which of the following is a major functional characteristic of all organisms? (a) movement, (b) growth (c) m...
Human Anatomy & Physiology (Marieb, Human Anatomy & Physiology) Standalone Book
What are the features of the cells, ground substance, and fibers that make up connective tissue?
Principles of Anatomy and Physiology
Choose the best answer to each of the following. Explain your reasoning. A geocentric model of the universe is ...
Cosmic Perspective Fundamentals
17.25 You are asked to prepare a pH = 3.00 buffer solution starting from 1.25 L of a 1.00 M solution of hydrofl...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A total charge Q is distributed uniformly on a metal ring of radius R. a. What is the magnitude of the electric field in the center of the ring at point O (Fig. P24.61)? b. What is the magnitude of the electric field at the point A lying on the axis of the ring a distance R from the center O (same length as the radius of the ring)? FIGURE P24.61arrow_forwardA solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forwardA long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire. The wire has a charge per unit length of , and the cylinder has a net charge per unit length of 2. From this information, use Gausss law to find (a) the charge per unit length on the inner surface of the cylinder, (b) the charge per unit length on the outer surface of the cylinder, and (c) the electric field outside the cylinder a distance r from the axis.arrow_forward
- A hollow sphere with a radius of 1.50 m has positive charge q uniformly distributed on its surface. At a point that is 0.6 m from outside from the surface of the sphere, the magnitude of the electric field is 40.0 N/C. What is the magnitude of the electric field at a point inside the sphere, at a distance of 0.7m from the center of the sphere?arrow_forwardA positive charge q = 7.81 μC is spread uniformly along a thin nonconducting rod of lengthL = 15.4 cm. What are the (a) magnitude and (b) direction (relative to the positive directionof the x axis) of the electric field produced at point P, at distance R = 6.00 cm from the rod along itsperpendicular bisector?arrow_forwardA disk of radius 3.3 cm has a surface charge density of 5.1 µC/m2 on its upper face. What is the magnitude of the electric field produced by the disk at a point on its central axis at distance z = 13 cm from the disk?arrow_forward
- A long silver rod of radius 3.0 cm has a charge of 5 microcoulombs per meter on its surface. Find the magnitude of the electric field at a point 5.0 cm from the center of the rod (an outside point). Round to 2 significant figures. what is the electric field at a point 2 cm from the central axis of the rodarrow_forwardA straight, nonconducting plastic wire 9.50 cmcm long carries a charge density of 135 nC/mnC/m distributed uniformly along its length. It is lying on a horizontal tabletop. Find the magnitude of the electric field this wire produces at a point 6.00 cmcm directly above its midpoint. And If the wire is now bent into a circle lying flat on the table, find the magnitude and direction of the electric field it produces at a point 6.00 cmcm directly above its center.arrow_forwardCharge is distributed uniformly throughout the volume of a large insulating cylinder of radius 25.1 cm. The charge per unit length in the cylindrical volume is 13.9 nC/m. Determine the magnitude of the electric field at a distance 14.4 cm from the central axis.arrow_forward
- ring-shaped conductor with radius a = 2.50 cm has a total positive charge Q = +0.125 nC uniformly distributed around it. The center of the ring is at the origin of coordinates O. (a) What is the electric field (magnitude and direction) at point P, which is on the x-axis at x = 40.0 cm? (b) A point charge Q = -2.50 ?C is placed at point P. What are the magnitude and direction of the force exerted by the charge q on the ring?arrow_forwardA solid sphere of radius 40.0 cm has a total positive charge of 16.0 µC uniformly distributed throughout its volume. Calculate the magnitude of the electric field at the following distances. (a) 0 cm from the center of the sphere kN/C (b) 10.0 cm from the center of the sphere 225 kN/C (c) 40.0 cm from the center of the sphere 900 V kN/C (d) 66.5 cm from the center of the sphere 1.11e-6 Would the field at this point be affected if the charge were moved to a point at the origin? kN/Carrow_forwardA hollow conducting sphere has an internal radius of r1 = 1.2 cm and an outside radius of r2 = 3.4 cm. The sphere has a net charge of Q = 2.8 nC. a) What is the magnitude of the electric field in the cavity at the center of the sphere, in newtons per coulomb? b) What is the magnitude of the field, in newtons per coulomb, inside the conductor, when r1 < r < r2? c) What is the magnitude of the field, in newtons per coulomb, at a distance r = 7.9 m away from the center of the sphere?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY