Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 13Q
Figure 22-32 shows three rods, each with the same charge Q spread uniformly along its length. Rods a (of length L) and b (of length L/2) are straight, and points P are aligned with their midpoints. Rod c (of length L/2) forms a complete circle about point P. Rank the rods according to the magnitude of the electric field they create at points P, greatest first.
Figure 22-32 Question 13.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
15 In Fig. 22-42, the three particles are
fixed in place and have charges 91 = 42 =
+e and q3 = +2e. Distance a = 6.00 µm.
What are the (a) magnitude and (b) direc-
tion of the net electric field at point P due to
the particles?
%3!
%3D
8 Go In Fig. 22-36, the four parti-
cles are fixed in place and have charges
91= 92= +5e, q3 = +3e, and q4 = -12e.
Distance d = 5.0 um. What is the
magnitude of the net electric field at
point P due to the particles?
94
91
93
42
Figure 22-36 Problem 8.
Figure 22-44 shows three circular arcs centered on the origin
of a coordinate system. On each arc, the uniformly distributed
charge is given in terms of Q=2.00 µC.The radii are given in
terms of R=10.0 cm.What are the (a) magnitude
and (b) direction (relative to the positive x direction) of the net
electric field at the origin due to the arcs?
3R
+9Q
-4Q
2R
+Q
R
Chapter 22 Solutions
Fundamentals of Physics Extended
Ch. 22 - Figure 22-22 shows three arrangements of electric...Ch. 22 - Figure 22-23 shows two square arrays of charged...Ch. 22 - In Fig. 22-24, two particles of charge q are...Ch. 22 - Figure 22-25 shows four situations in which four...Ch. 22 - Figure 22-26 shows two charged particles fixed in...Ch. 22 - In Fig. 22-27, two identical circular...Ch. 22 - The potential energies associated with four...Ch. 22 - a In Checkpoint 4, if the dipole rotates from...Ch. 22 - Figure 22-28 shows two disks and a flat ring, each...Ch. 22 - In Fig. 22-29, an electron e travels through a...
Ch. 22 - In Fig. 22-30a, a circular plastic rod with...Ch. 22 - When three electric dipoles ire near each other,...Ch. 22 - Figure 22-32 shows three rods, each with the same...Ch. 22 - Figure 22-33 shows five protons that are launched...Ch. 22 - Sketch qualitatively the electric field lines both...Ch. 22 - In Fig. 22-34 the electric field lines on the left...Ch. 22 - SSM The nucleus of a plutonium-239 atom contains...Ch. 22 - Two charged particles are attached to an x axis:...Ch. 22 - SSM A charged particle produces an electric Held...Ch. 22 - What is the magnitude of a point charge that would...Ch. 22 - SSM ILW WWW In Fig. 22-35, the four particles form...Ch. 22 - GO In Fig. 22-36, the four particles are fixed in...Ch. 22 - GO Figure 22-37 shows two charged particles on an...Ch. 22 - GO Figure 22-38a shows two charged particles fixed...Ch. 22 - SSM Two charged particles are fixed to x axis:...Ch. 22 - GO Figure 22-39 shows an uneven arrangement of...Ch. 22 - GO Figure 22-40 shows a proton on the central...Ch. 22 - In Fig. 22-41, particle 1 of charge q1 = 5.00q and...Ch. 22 - In Fig. 22-42, the three particles are fixed in...Ch. 22 - Figure 22-43 shows a plastic ring of radius R =...Ch. 22 - Two charged beads are on the plastic ring in Fig....Ch. 22 - The electric field of an electric dipole along the...Ch. 22 - Figure 22-45 shows an electric dipole. What are...Ch. 22 - Equations 22-8 and 22-9 are approximations of the...Ch. 22 - SSM Electric quadrupole. Figure 22-46 shows a...Ch. 22 - Density, density, density. a A charge 300e is...Ch. 22 - Figure 22-47 shows two parallel nonconducting...Ch. 22 - A thin nonconducting rod with a uniform...Ch. 22 - Figure 22-49 shows three circular arcs centered on...Ch. 22 - GO ILW In Fig. 22-50, a thin glass rod forms a...Ch. 22 - GO In Fig, 22-51, two curved plastic rods, one of...Ch. 22 - Charge is uniformly distributed around a ring of...Ch. 22 - GO Figure 22-52a shows a nonconducting rod with a...Ch. 22 - GO Figure 22-53 shows two concentric rings, of...Ch. 22 - SSM ILW WWW In Fig. 22-54, a nonconducting rod of...Ch. 22 - GO In Fig. 22-55, positive charge q = 7.81 pC is...Ch. 22 - GO In Fig. 22-56, a semi-infinite nonconducting...Ch. 22 - A disk of radius 2.5 cm has a surface charge...Ch. 22 - SSM WWW At what distance along the central...Ch. 22 - A circular plastic disk with radius R = 2.00 cm...Ch. 22 - Suppose you design an apparatus in which a...Ch. 22 - Figure 22-58a shows a circular disk that is...Ch. 22 - In Millikans experiment, an oil drop of radius...Ch. 22 - GO An electron with a speed of 5.00 108 cm/s...Ch. 22 - SSM A charged cloud system produces an electric...Ch. 22 - Humid air breaks down its molecules become ionized...Ch. 22 - SSM An electron is released from rest in a uniform...Ch. 22 - An alpha particle the nucleus of a helium atom has...Ch. 22 - ILW An electron on the axis of an electric dipole...Ch. 22 - An electron is accelerated eastward at 1.80 ...Ch. 22 - SSM Beams of high-speed protons can be produced in...Ch. 22 - In Fig. 22-59, an electron e is to be released...Ch. 22 - A 10.0 g block with a charge of 8.00 10-5 C is...Ch. 22 - At some instant the velocity components of an...Ch. 22 - Assume that a honeybee is a sphere of diameter...Ch. 22 - An electron eaters a region of uniform electric...Ch. 22 - GO Two large parallel copper plates are 5.0 cm...Ch. 22 - GO In Fig. 22-61, an electron is shot at an...Ch. 22 - ILW A uniform electric field exists in a region...Ch. 22 - An electric dipole consists of charges 2e and -2e...Ch. 22 - SSM An electric dipole consisting of charges of...Ch. 22 - A certain electric dipole is placed in a uniform...Ch. 22 - How much work is required to turn an electric...Ch. 22 - A certain electric dipole is placed in a uniform...Ch. 22 - Find an expression for the oscillation frequency...Ch. 22 - a What is the magnitude of an electrons...Ch. 22 - A spherical water drop 1.20 m in diameter is...Ch. 22 - Three particles, each with positive charge Q, form...Ch. 22 - In Fig. 22-64a, a particle of charge Q produces an...Ch. 22 - A proton and an electron form two comers of an...Ch. 22 - A charge uniform linear density = 9.0 nC/m lies on...Ch. 22 - In Fig. 22-65, eight particles form a square in...Ch. 22 - Two particles, each with a charge of magnitude 12...Ch. 22 - The following table gives the charge seen by...Ch. 22 - A charge of 20 nC is uniformly distributed along a...Ch. 22 - An electron is constrained to the central axis of...Ch. 22 - SSM The electric field in an xy plane produced by...Ch. 22 - a What total excess charge q must the disk in Fig....Ch. 22 - In Fig. 22-66, particle 1 of charge 1.00 C,...Ch. 22 - In Fig. 22-67, an electric dipole swings from an...Ch. 22 - A particle of charge q1 is at the origin of an x...Ch. 22 - Two particles, each of positive charge q, are...Ch. 22 - A clock face has negative point charges q, 2q,...Ch. 22 - Calculate the electric dipole moment of an...Ch. 22 - An electric field E with an average magnitude of...Ch. 22 - A circular rod has a radius of curvature R = 9.00...Ch. 22 - SSM An electric dipole with dipole moment p= 3.00 ...Ch. 22 - In Fig. 22-68, a uniform, upward electric field E...Ch. 22 - For the data of Problem 70, assume that the charge...Ch. 22 - In Fig. 22-66, particle 1 of charge 2.00 pC,...Ch. 22 - In Fig. 22-69, particle 1 of charge q1 = 1.00pC...
Additional Science Textbook Solutions
Find more solutions based on key concepts
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
Answer the following questions for each compound: a. How many signals are in its 13C NMR spectrum? b. Which sig...
Organic Chemistry (8th Edition)
Choose the best answer to each of the following. Explain your reasoning. What kind of object is the best standa...
Cosmic Perspective Fundamentals
6. A particle starts from x0 = 10 m at t = 0 s and moves with the velocity graph shown in FIGURE EX2.6.
a. Do...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic a. One lilac species lives on...
Campbell Essential Biology (7th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forwardIn nuclear fission, a nucleus of uranium-238, which contains 92 protons, can divide into two smaller spheres, each having 46 protons and a radius of 5.90 1015 m. What is the magnitude of the repulsive electric force pushing the two spheres apart?arrow_forwardTwo solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forward
- aA plastic rod of length = 24.0 cm is uniformly charged with a total charge of +12.0 C. The rod is formed into a semicircle with its center at the origin of the xy plane (Fig. P24.34). What are the magnitude and direction of the electric field at the origin? Figure P24.34arrow_forwardFigure 22-40 shows an electric dipole. What are the (a) magni- tude and (b) direction (rèlative to the positive direction of the x axis) of the dipole's electric field at point P, located at distance r> d? +q d/2 d/2 Fig. 22-40 Problem 19.arrow_forward87 In Fig. 22-69, particle 1 of charge q1 = 1.00 pC and particle 2 of charge q2 = -2.00 pC are fixed at a distance d = 5.00 cm apart. In unit-vector notation, what is the net electric field at points (a) A, (b) B, and (c) C? (d) Sketch the electric field lines. -d- 2. Figure 22-69 Problem 87.arrow_forward
- The figure is a section of a conducting rod of radius R₁ = 1.50 mm and length L = 12.90 m inside a thin-walled coaxial conducting cylindrical shell of radius R₂ = 11.0R₁ and the (same) length L. The net charge on the rod is Q₁ +3.68 x 10-12 C; that on the shell is Q₂ = -2.30Q₁. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 2.30R₂? What are (c) E and (d) the direction at r = 5.20R₁? What is the charge on the (e) interior and (f) exterior surface of the shell? (a) Number Unitsarrow_forwardThe figure is a section of a conducting rod of radius R₁ = 1.20 mm and length L = 13.50 m inside a thin- walled coaxial conducting cylindrical shell of radius R₂ = 10.9R₁ and the (same) length L. The net charge on the rod is Q₁ = +3.56 × 10-¹2 C; that on the shell is Q2 = -2.05Q₁. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 2.20R2? What are (c) E and (d) the direction at r = 5.06R₁? What is the charge on the (e) interior and (f) exterior surface of the shell? R₂ Ri exarrow_forwardFigure 22-32 shows two charged particles on an x axis: -q = --3.20 X 10-19 C at x = -3.00 m and q = 3.20 x 10-19 C at x = +3.00 m. What are the (a) magnitude and (b) itection (relative to the positive direction of the x axis) of the net electric field produced at point P at y = 4.00 m? %3D %3D y -9 Fig. 22-32· Problem 9.arrow_forward
- 84 In Fig. 22-68, a uniform, upward electric field E of magnitude 2.00 x 10° N/C has been set up between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have Figure 22-68 Problem 84. length L = 10.0 cm and separation d = 2.00 cm. An electron is then shot between the plates from the left edge of the lower plate. The initial velocity vo of the electron makes an angle e = 45.0° with the lower plate and has a magnitude of 6.00 x 10° m/s. (a) Will the electron strike one of the plates? (b) If so, which plate and how far horizon- tally from the left edge will the electron strike? 7. 1:0arrow_forwardThe figure is a section of a conducting rod of radius R1 = 1.50 mm and length L = 14.40 m inside a thin-walled coaxial conducting cylindrical shell of radius R2 = 10.5R1 and the (same) length L. The net charge on the rod is Q1 = +3.44 x 10-12 C; that on the shell is Q2 = -2.34Q1. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 2.05R2? What are (c) E and (d) the direction at r = 5.27R1? What is the charge on the (e) interior and (f) exterior surface of the shell? R (a) Number i Units (b) (c) Number i Units (d) (e) Number i Units (f) Number i Unitsarrow_forwardThe figure is a section of a conducting rod of radius R₁ = 1.30 mm and length L = 13.80 m inside a thin-walled coaxial conducting cylindrical shell of radius R₂ = 10.1R₁ and the (same) length L. The net charge on the rod is Q₁ = +3.42 × 10-¹2 C; that on the shell is Q₂ = -2.05Q₁. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 2.11R₂? What are (c) E and (d) the direction at r = 5.30R₁? What is the charge on the (e) interior and (f) exterior surface of the shell?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY