![Principles of Physics: A Calculus-Based Text](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_largeCoverImage.gif)
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 33P
A student throws a set of keys vertically upward to her sorority sister, who is in a window 4.00 m above. The second student catches the keys 1.50 s later. (a) With what initial velocity were the keys thrown? (b) What was the velocity of the keys just before they were caught?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
A physics textbook is at rest on a table. If we call the gravitational force exerted on book action, what it the reaction force according to Newton’s third law? Explain
Part I. Addition of vectors
a) using the graphical method, add 3.00 cm at 180°
and 5.00 cm
at 53.1°. Draw the vectors
b) using the
component method.
2
add 3.00 cm at 180° and 5.00cm at 53.10 again. Include all calculations below.
c) what is the magnitude and direction of the resultant nd equilibrant forces of 1.00N force at 30.0° nd 1.00 N force at 150°?
Part I. Addition of vectors
a) using the graphical method, add 3.00 cm at 180°
and 5.00 cm
at 53.1°. Draw the vectors
b) using the
component method.
2
add 3.00 cm at 180° and 5.00cm at 53.10 again. Include all calculations below.
c) what is the magnitude and direction of the resultant nd equilibrant forces of 1.00N force at 30.0° nd 1.00 N force at 150°?
Chapter 2 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are members of the highway patrol more interested...Ch. 2.4 - Using Active Figure 2.8, match each vxt graph on...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which of the following statements is true? (a) If...Ch. 2.7 - A ball is thrown upward. While the ball is in...Ch. 2 - One drop of oil falls straight down onto the road...Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 3OQCh. 2 - Prob. 4OQ
Ch. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - Prob. 8OQCh. 2 - As an object moves along the x axis, many...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - A hard rubber ball, not affected by air resistance...Ch. 2 - Prob. 14OQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 2CQCh. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - Prob. 6CQCh. 2 - Prob. 7CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 8PCh. 2 - A hare and a tortoise compete in a race over a...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - A particle moves along the x axis according to the...Ch. 2 - A student drives a moped along a straight road as...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Figure P2.15 shows a graph of vx versus t for the...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Prob. 17PCh. 2 - The minimum distance required to stop a car moving...Ch. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - The driver of a car slams on the brakes when he...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - A truck on a straight road starts from rest,...Ch. 2 - A particle moves along the x axis. Its position is...Ch. 2 - A speedboat travels in a straight line and...Ch. 2 - In a classic clip on Americas Funniest Home...Ch. 2 - Prob. 29PCh. 2 - A baseball is hit so that it travels straight...Ch. 2 - Prob. 31PCh. 2 - It is possible to shoot an arrow at a speed as...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - A ball is thrown directly downward with an initial...Ch. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A steam catapult launches a jet aircraft from the...Ch. 2 - An object is at x = 0 at t = 0 and moves along the...Ch. 2 - Colonel John P. Stapp, USAF, participated in...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - A ball starts from rest and accelerates at 0.500...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Prob. 45PCh. 2 - The Acela is an electric train on the...Ch. 2 - Liz rushes down onto a subway platform to find her...Ch. 2 - A commuter train travels between two downtown...Ch. 2 - Prob. 49PCh. 2 - A motorist drives along a straight road at a...Ch. 2 - Prob. 51PCh. 2 - Astronauts on a distant planet toss a rock into...Ch. 2 - Prob. 53PCh. 2 - A hard rubber ball, released at chest height,...Ch. 2 - A man drops a rock into a well. (a) The man hears...Ch. 2 - Why is the following situation impossible? A...Ch. 2 - Two objects, A and B, are connected by a rigid rod...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 10. Inx 8.817 11.9.30 × 10-6 12.0.00500010 13.331,000,000 14.6.0005 15.pH=-log[H3O+} = 12.1830arrow_forwardRequired information In a standard tensile test, a steel rod of 1 3 -in. diameter is subjected to a tension force of P = 21 kips. It is given that v= 0.30 and E= 29 × 106 psi. 1-in. diameter P P -8 in. Determine the change in diameter of the rod. (Round the final answer to six decimal places.) The change in diameter of the rod is - in.arrow_forward5.84 ... If the coefficient of static friction between a table and a uni- form, massive rope is μs, what fraction of the rope can hang over the edge of the table without the rope sliding? 5.97 Block A, with weight Figure P5.97 3w, slides down an inclined plane S of slope angle 36.9° at a constant speed while plank B, with weight w, rests on top of A. The plank is attached by a cord to the wall (Fig. P5.97). (a) Draw a diagram of all the forces acting on block A. (b) If the coefficient of kinetic friction is the same between A and B and between S and A, determine its value. B 36.9°arrow_forward
- 5.60 An adventurous archaeologist crosses between two rock cliffs by slowly going hand over hand along a rope stretched between the cliffs. He stops to rest at the middle of the rope (Fig. P5.60). The rope will break if the tension in it exceeds 2.50 X 104 N, and our hero's mass is 90.0 kg. (a) If the angle is 10.0°, what is the tension in the rope? (b) What is the smallest value can have if the rope is not to break? Figure P5.60arrow_forwardplease answer the question thanks!arrow_forward5.48 ⚫ A flat (unbanked) curve on a highway has a radius of 170.0 m. A car rounds the curve at a speed of 25.0 m/s. (a) What is the minimum coefficient of static friction that will prevent sliding? (b) Suppose that the highway is icy and the coefficient of static friction between the tires and pavement is only one-third of what you found in part (a). What should be the maximum speed of the car so that it can round the curve safely?arrow_forward
- 5.77 A block with mass m₁ is placed on an inclined plane with slope angle a and is connected to a hanging block with mass m₂ by a cord passing over a small, frictionless pulley (Fig. P5.74). The coef- ficient of static friction is μs, and the coefficient of kinetic friction is Mk. (a) Find the value of m₂ for which the block of mass m₁ moves up the plane at constant speed once it is set in motion. (b) Find the value of m2 for which the block of mass m₁ moves down the plane at constant speed once it is set in motion. (c) For what range of values of m₂ will the blocks remain at rest if they are released from rest?arrow_forward5.78 .. DATA BIO The Flying Leap of a Flea. High-speed motion pictures (3500 frames/second) of a jumping 210 μg flea yielded the data to plot the flea's acceleration as a function of time, as shown in Fig. P5.78. (See "The Flying Leap of the Flea," by M. Rothschild et al., Scientific American, November 1973.) This flea was about 2 mm long and jumped at a nearly vertical takeoff angle. Using the graph, (a) find the initial net external force on the flea. How does it compare to the flea's weight? (b) Find the maximum net external force on this jump- ing flea. When does this maximum force occur? (c) Use the graph to find the flea's maximum speed. Figure P5.78 150 a/g 100 50 1.0 1.5 0.5 Time (ms)arrow_forward5.4 ⚫ BIO Injuries to the Spinal Column. In the treatment of spine injuries, it is often necessary to provide tension along the spi- nal column to stretch the backbone. One device for doing this is the Stryker frame (Fig. E5.4a, next page). A weight W is attached to the patient (sometimes around a neck collar, Fig. E5.4b), and fric- tion between the person's body and the bed prevents sliding. (a) If the coefficient of static friction between a 78.5 kg patient's body and the bed is 0.75, what is the maximum traction force along the spi- nal column that W can provide without causing the patient to slide? (b) Under the conditions of maximum traction, what is the tension in each cable attached to the neck collar? Figure E5.4 (a) (b) W 65° 65°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY