Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 15P
Figure P2.15 shows a graph of vx versus t for the motion of a motorcyclist as he starts from rest and moves along the road in a straight line. (a) Find the average acceleration for the time interval t = 0 to t = 6.00 s. (b) Estimate the time at which the acceleration has its greatest positive value and the value of the acceleration at that instant. (c) When is the acceleration zero? (d) Estimate the maximum negative value of the acceleration and the time at which it occurs.
Figure P2.15
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Figure P2.15 shows a graph of vx versus t for the motion of a motorcyclist as he starts from rest and moves along the road in a straight line. (a) Find the average acceleration for the time interval t = 0 to t = 6.00 s. (b) Estimate the time at which the acceleration has its greatest positive value and the value of the acceleration at that instant. (c) When is the acceleration zero? (d) Estimate the maximum negative value of the acceleration and the time at which it occurs.
You are driving home from school steadily at 99 km/h for 190 km . It then begins to rain and you slow to 63 km/h instantly. You arrive home after driving 5.0 hours.
How far is your hometown from school?Express your answer using two significant figures.
What was your average speed?Express your answer using two significant figures.
In heavy rush-hour traffic, you drive in a straight line at 12 m/s for 1.5 minutes, then you have to stop for 3.5 minutes, and finally, you drive at 15 m/s for another 2.5 minutes.
Plot a position-versus-time graph for this motion. Your plot should extend from t = 0 minutes to t = 7.5 minutes.
Assume x=0 and t=0 at the start of your motion.
Chapter 2 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are members of the highway patrol more interested...Ch. 2.4 - Using Active Figure 2.8, match each vxt graph on...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which of the following statements is true? (a) If...Ch. 2.7 - A ball is thrown upward. While the ball is in...Ch. 2 - One drop of oil falls straight down onto the road...Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 3OQCh. 2 - Prob. 4OQ
Ch. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - Prob. 8OQCh. 2 - As an object moves along the x axis, many...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - A hard rubber ball, not affected by air resistance...Ch. 2 - Prob. 14OQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 2CQCh. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - Prob. 6CQCh. 2 - Prob. 7CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 8PCh. 2 - A hare and a tortoise compete in a race over a...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - A particle moves along the x axis according to the...Ch. 2 - A student drives a moped along a straight road as...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Figure P2.15 shows a graph of vx versus t for the...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Prob. 17PCh. 2 - The minimum distance required to stop a car moving...Ch. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - The driver of a car slams on the brakes when he...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - A truck on a straight road starts from rest,...Ch. 2 - A particle moves along the x axis. Its position is...Ch. 2 - A speedboat travels in a straight line and...Ch. 2 - In a classic clip on Americas Funniest Home...Ch. 2 - Prob. 29PCh. 2 - A baseball is hit so that it travels straight...Ch. 2 - Prob. 31PCh. 2 - It is possible to shoot an arrow at a speed as...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - A ball is thrown directly downward with an initial...Ch. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A steam catapult launches a jet aircraft from the...Ch. 2 - An object is at x = 0 at t = 0 and moves along the...Ch. 2 - Colonel John P. Stapp, USAF, participated in...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - A ball starts from rest and accelerates at 0.500...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Prob. 45PCh. 2 - The Acela is an electric train on the...Ch. 2 - Liz rushes down onto a subway platform to find her...Ch. 2 - A commuter train travels between two downtown...Ch. 2 - Prob. 49PCh. 2 - A motorist drives along a straight road at a...Ch. 2 - Prob. 51PCh. 2 - Astronauts on a distant planet toss a rock into...Ch. 2 - Prob. 53PCh. 2 - A hard rubber ball, released at chest height,...Ch. 2 - A man drops a rock into a well. (a) The man hears...Ch. 2 - Why is the following situation impossible? A...Ch. 2 - Two objects, A and B, are connected by a rigid rod...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Cheetahs can accelerate to a speed of 20.2 m/s in 2.65 s and can continue to accelerate to reach a top speed of 29.0 m/s . Assume the acceleration is constant until the top speed is reached and is zero thereafter. Let the +? direction point in the direction the cheetah runs.Express the cheetah's top speed ?top in miles per hour (mi/h) .Starting from a crouched position, how much time ?accel does it take a cheetah to reach its top speed and what distance ? does it travel in that time?arrow_forwardAn object is at x = 0 at t = 0 and moves along the x axis according to the velocity-time graph in Figure P2.62. (a) What is the object’s acceleration between 0 and 4.0 s? (b) What is the object's acceleration between 4.0 s and 9.0 s? (c) What is the object's acceleration between 13.0 s and 18.0 s? (d) At what time(s) is the object moving with the lowest speed? (e) At what time is the object farthest from x = 0? (1) What is the final position x of the object at t = 18.0 s? (g) Through what total distance has the object moved between t = 0 and t = 18.0 s?arrow_forwardSally is driving along a straight highway in her 1965 Mustang. At t=0, when she is moving at 10m/s in the positive x direction, she passes a signpost at x = 50m. Her acceleration as a function of time is a = 2.0 m/s^2 - 0.10t (m/s^2) a) Deduce the expression for its velocity and position as a function of time. b) At what time is the velocity maximum? c) What is the speed? d) Where is the car when it reaches that speed?arrow_forward
- A particle moving along the x axis has acceleration in the x direction as function of the time given by a(t) = 6t²-t. For t=0 the initial velocity is 6.0 m/s. Determine the velocity when t = 1.0 s. Write here your answer. Include the units.arrow_forwardA vehicle accelerates down an on ramp and eventually reaches highway speed. The position of the vehicle is described by the following equation:x(t) = At2/(t+B) Write an expression for the vehicle’s instantaneous velocity as a function of time. What is the vehicle’s velocity after accelerating for 7 seconds? The equation’s parameters are as follows. A = 31 m/s B = 25 s Determine the value of the vehicle’s velocity after it has been accelerating for a long time. The equation’s parameters are as follows. A = 31 m/s B = 25 sarrow_forwardThe figure below shows a graph of v, versus t for the motion of a motorcyclist as he starts from rest and moves along the road in a straight line. Uz (m/s) 10 8 2 t (s) 12 4 8 10 (a) Find the average acceleration for the time interval t = 0 to t = 12.0 s. m/s² (b) Estimate the time at which the acceleration has its greatest positive value. S What is the value of the acceleration at that instant? m/s? (c) When is the acceleration zero? Acceleration is zero whent = s and whent > S. (d) Estimate the maximum negative value of the acceleration. m/s² .2 At what time does it occur? S 4.arrow_forward
- A car starts from rest at t = 0 s, and speeds up with a constant acceleration of 1.66 m/s2 for 6.00 s. Then it continues with a uniform speed for another 6.00 s. Finally, it speeds up with a constant acceleration of 2.17 m/s2 until it reaches a speed of 18.0 m/s. (a) Draw the velocity vs. time and acceleration vs. time graphs for this motion. Numerical values on the graphs are not required.(b) How long does it take for the car to reach a speed of 18.0 m/s? Time is measured from the beginning at t = 0 s (c) What is the total displacement of the car?arrow_forwardA car starts from rest at t = 0 s, and speeds up with a constant acceleration of 1.66 m/s2 for 6.00 s. Then it continues with a uniform speed for another 6.00 s. Finally, it speeds up with a constant acceleration of 2.17 m/s2 until it reaches a speed of 18.0 m/s. (a) Draw the velocity vs. time and acceleration vs. time graphs for this motion. Numerical values on the graphs are not required.(b) How long does it take for the car to reach a speed of 18.0 m/s? Time is measured from the beginning at t = 0 s(c) What is the total displacement of the car?arrow_forwardA student performs a simple experiment to find the average acceleration of a falling object. He drops a baseball from a building and uses a string and meter stick to measure the height the ball was dropped. He uses a stopwatch to find an average time of fall for 3 trials from the same height and reports the following data: h =5.25 ± 0.15 m, t = 1.14 ± 0.06 S. a) Use the equation a = 2h/t2 to determine the average acceleration and its uncertainty. b) Comment on the accuracy of the acceleration result. Do you think the student made any mistakes? c) What one suggestion would you tell this student to improve the experimental result? Please explain.arrow_forward
- Suppose a dragster decelerates from 50.0 m/s with a constant acceleration. It comes to a stop in a distance of 200 m. (a) What was the acceleration of the dragster as it slowed down to a stop? (b) How fast was the dragster moving when it was 60.0 m past the point when it started to decelerate? For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).arrow_forwardThe velocity as a function of time for a world-class track sprinter in a 100 m race is shown in the figure. The sprinter accelerates for the first 4.0 seconds, and then runs at a constant velocity until the end of the race. What is his average velocity for the first 4.0 s, in meters per second?arrow_forwardA Thomson's gazelle can run at very high speeds, but its acceleration is relatively modest. A reasonable model for the sprint of a gazelle assumes an acceleration of 4.2 m/s2m/s2 for 6.5 ss , after which the gazelle continues at a steady speed. What is the gazelle's top speed? Express your answer with the appropriate units. A human would win a very short race with a gazelle. The best time for a 30 mm sprint for a human runner is 3.6 ss. How much time would the gazelle take for a 30 mm race? Express your answer with the appropriate units. A gazelle would win a longer race. The best time for a 200 mm sprint for a human runner is 19.3 ss. How much time would the gazelle take for a 200 mm race? Express your answer with the appropriate units.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY