Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 3P
(a)
To determine
The average velocity of the car for the first second.
(b)
To determine
The average velocity of the car for the last three second.
(c)
To determine
The average velocity of the car for the entire period of observation.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A runner is running around rectangular track with length = 50 meters and width = 20 meters. He travels around rectangular track twice, finally running back to starting point. If the total time he takes to run around the track is 100 seconds, determine average speed and average velocity.
A horse canters away from its trainer in a straight line, moving 45 m away in 8.7 s. It then turns abruptly and gallops halfway back in 1.9 s.
Calculate its average speed for the entire trip.Express your answer using two significant figures.
Calculate its average velocity for the entire trip, using "away from the trainer" as the positive direction.Express your answer using two significant figures.
Mr. Nakset bikes to work every morning. 19 meters from his home where he started, he gains a velocity of 30 km/h. If he started from rest, determine the ff: a) If his acceleration is constant, determine its magnitude (m/s2). b) Also, at what time does he reach 19 meters? c) If his acceleration (still constant) 25 meters from where he started increases by 20%, what is the total time that it takes to reach his work place which is 1 km from his home (in seconds)?
Chapter 2 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are members of the highway patrol more interested...Ch. 2.4 - Using Active Figure 2.8, match each vxt graph on...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which of the following statements is true? (a) If...Ch. 2.7 - A ball is thrown upward. While the ball is in...Ch. 2 - One drop of oil falls straight down onto the road...Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 3OQCh. 2 - Prob. 4OQ
Ch. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - Prob. 8OQCh. 2 - As an object moves along the x axis, many...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - A hard rubber ball, not affected by air resistance...Ch. 2 - Prob. 14OQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 2CQCh. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - Prob. 6CQCh. 2 - Prob. 7CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 8PCh. 2 - A hare and a tortoise compete in a race over a...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - A particle moves along the x axis according to the...Ch. 2 - A student drives a moped along a straight road as...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Figure P2.15 shows a graph of vx versus t for the...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Prob. 17PCh. 2 - The minimum distance required to stop a car moving...Ch. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - The driver of a car slams on the brakes when he...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - A truck on a straight road starts from rest,...Ch. 2 - A particle moves along the x axis. Its position is...Ch. 2 - A speedboat travels in a straight line and...Ch. 2 - In a classic clip on Americas Funniest Home...Ch. 2 - Prob. 29PCh. 2 - A baseball is hit so that it travels straight...Ch. 2 - Prob. 31PCh. 2 - It is possible to shoot an arrow at a speed as...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - A ball is thrown directly downward with an initial...Ch. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A steam catapult launches a jet aircraft from the...Ch. 2 - An object is at x = 0 at t = 0 and moves along the...Ch. 2 - Colonel John P. Stapp, USAF, participated in...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - A ball starts from rest and accelerates at 0.500...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Prob. 45PCh. 2 - The Acela is an electric train on the...Ch. 2 - Liz rushes down onto a subway platform to find her...Ch. 2 - A commuter train travels between two downtown...Ch. 2 - Prob. 49PCh. 2 - A motorist drives along a straight road at a...Ch. 2 - Prob. 51PCh. 2 - Astronauts on a distant planet toss a rock into...Ch. 2 - Prob. 53PCh. 2 - A hard rubber ball, released at chest height,...Ch. 2 - A man drops a rock into a well. (a) The man hears...Ch. 2 - Why is the following situation impossible? A...Ch. 2 - Two objects, A and B, are connected by a rigid rod...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As a training exercise, a soccer player must run the length of the soccer field (leg 1), then turn around and run back to her starting point (leg 2) without stopping. If the length of the soccer field is L meters, and she runs the leg 1 in t 1 seconds, then turns around and runs leg 2 in t_2 seconds, find the following: (Write your answers using the symbols as they are written in the question.) a) Her average velocity during leg 1 was L/t'1 m-s 1, b) Her average velocity during leg 2 was L/t 2 m-s1. c) Her average velocity over the entire exercise was m-s 1. d) Her average speed during the entire exercise was 2L/t_1+t_2 m-s1. CO3, W31, W32 Ask Dr. Hébert for help.arrow_forwardThe displacement (in feet) of a certain particle moving in a straight line is given by y = (A) Find the average velocity for the time period beginning when t = 3 and lasting (i) .01 s: (ii) .005 s: (iii.002 s: (iv) .001 s: NOTE: For the above answers, you may have to enter 6 or 7 significant digits if you are using a calculator. (B) Estimate the instantaneous velocity when t = 3. Answer:arrow_forwardA physics teacher walks 5 km East, 2.5 km South, 5 km West, and finally 2.5 km North. The entire motion lasted for 3 hours. Determine the average speed and the average velocity.arrow_forward
- A drunkard walking in a narrow lane takes 5 steps forward and 3 steps backward, followed again by 8 steps forward and 5 steps backward, and so on. Each step is 1 m long and requires 1s. Plot the x-t graph of his motion. Determine graphically and otherwise how long the drunkard takes to fall in a pit 15 m away from the start.arrow_forwardA turtle and a rabbit engage in a footrace over a distance of 4000m. The rabbit runs 0.500 km and then stops for a 1.5 hr nap. Upon awakening, he remembers the race and runs twice as fast. Finishing the course in a total time of 1.75 hr, the rabbit wins the race. (a) Calculate the average speed of the rabbit in SI units. (b) What was his average speed in SI units before he stopped for a nap? Assume no detours or doubling back.arrow_forwardA turtle and a rabbit engage in a footrace over a distance of 4km. The rabbit runs 0.5km and then stops for a 90-min nap. Upon awakening, he remembers the race and runs twice as fast. Finishing the course in a total time of 1.75h, the rabbit wins the race. Calculate the average speed of the rabbitarrow_forward
- An object is dropped from rest from the top of a 55.68-meter building. After 1.63 seconds, another object is thrown from the same position with some speed downward, so that they both hit the base of the building at the same instant. Find the initial speed of the second object. response in m / sarrow_forwardA bus initially at a bus stop accelerates continuously for a kilometer, taking a minute and a half. Upon closing in on the next stop, the driver then begins to hit the brakes until it reaches a full stop in 8 seconds. Find the total distance that the bus traveled and the velocity of the bus just before it begins decelerating.arrow_forwardA car is moving along a straight line defined to be the positive x direction. It's velocity is measured and found to be a function of time given by v_x(t)=at^2 where a is a known constant. The car was at the point x=A at the time t=2s. Find the cars position as a function of timr. How fast would the car be going just before it hits a wall located at x=L?arrow_forward
- A cat starts from rest and runs in a straight line according to x(t)=60+3t^2. Calculate the displacement of the cat during the first 20 seconds. Calculate the velocity of the cat when t=6. Calculate the acceleration. What is the average velocity over the time interval from 4s to 8s?arrow_forwardA fugutive is resting by a tree when a train passes him, traveling at a constant 6.3 m/s. The fugitive immediately begins running, accelerating at 3.6 m/s² until he reaches his maximum velocity of 7.3 m/s. He continues running at that speed until he catches the train. How long did it take him to catch the train? (Assume the clock started at the instant he began to accelerate.) t = unit How far did he have to run to catch up to the train? Ax = unitarrow_forwardA vehicle accelerates down an on ramp and eventually reaches highway speed. The position of the vehicle is described by the following equation:x(t) = At2/(t+B) Write an expression for the vehicle’s instantaneous velocity as a function of time. What is the vehicle’s velocity after accelerating for 7 seconds? The equation’s parameters are as follows. A = 31 m/s B = 25 s Determine the value of the vehicle’s velocity after it has been accelerating for a long time. The equation’s parameters are as follows. A = 31 m/s B = 25 sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY