Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 57P
Two objects, A and B, are connected by a rigid rod that has a length L. The objects slide along perpendicular guide rails, as shown in Figure P2.57. If A slides to the left with a constant speed v, find the velocity of B when α = 60.0°.
Figure P2.57
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A pin is forced to move along a parabola shaped guide by a connected collar that moves along the r-axis only, as shown in the
figure.
5m
V. a, 2 m
When a = 0.5 m the velocity and acceleration of the collar are:
vr = -2.6 m/s and ag = 26 m/s? respectively.
The parabolic guide is described by y = -1.25 a2 +5. z, where both z and y are in units of metres.
What is the y-component of velocity, vy at this instant?
Number Units
What is the magnitude of the acceleration lalat this instant?
Number Units
What is the normal component of the acceleration, an at this instant?
Number Units
A spacecraft has an initial speed of 3308 m/s at an angle of 42 degrees above the positive x axis. Two engines fire for 9.15 seconds, and produce an acceleration of 8.3 m/s/s at an angle of 39.5 degrees above the positive x axis. What is the velocity of the spacecraft when the engines shut off? What is the angle from the positive x axis?
Two kittens are running toward each other, one is named Chloe and the other is named Luna. Luna runs at a speed of 1.90 m/s. If Chloe jumps at an angle of 14.0° with speed 2.80 m/s, at what distance from Luna should Chloe jump to make sure she lands on Luna?
Chapter 2 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are members of the highway patrol more interested...Ch. 2.4 - Using Active Figure 2.8, match each vxt graph on...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which of the following statements is true? (a) If...Ch. 2.7 - A ball is thrown upward. While the ball is in...Ch. 2 - One drop of oil falls straight down onto the road...Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 3OQCh. 2 - Prob. 4OQ
Ch. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - Prob. 8OQCh. 2 - As an object moves along the x axis, many...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - A hard rubber ball, not affected by air resistance...Ch. 2 - Prob. 14OQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 2CQCh. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - Prob. 6CQCh. 2 - Prob. 7CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 8PCh. 2 - A hare and a tortoise compete in a race over a...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - A particle moves along the x axis according to the...Ch. 2 - A student drives a moped along a straight road as...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Figure P2.15 shows a graph of vx versus t for the...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Prob. 17PCh. 2 - The minimum distance required to stop a car moving...Ch. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - The driver of a car slams on the brakes when he...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - A truck on a straight road starts from rest,...Ch. 2 - A particle moves along the x axis. Its position is...Ch. 2 - A speedboat travels in a straight line and...Ch. 2 - In a classic clip on Americas Funniest Home...Ch. 2 - Prob. 29PCh. 2 - A baseball is hit so that it travels straight...Ch. 2 - Prob. 31PCh. 2 - It is possible to shoot an arrow at a speed as...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - A ball is thrown directly downward with an initial...Ch. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A steam catapult launches a jet aircraft from the...Ch. 2 - An object is at x = 0 at t = 0 and moves along the...Ch. 2 - Colonel John P. Stapp, USAF, participated in...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - A ball starts from rest and accelerates at 0.500...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Prob. 45PCh. 2 - The Acela is an electric train on the...Ch. 2 - Liz rushes down onto a subway platform to find her...Ch. 2 - A commuter train travels between two downtown...Ch. 2 - Prob. 49PCh. 2 - A motorist drives along a straight road at a...Ch. 2 - Prob. 51PCh. 2 - Astronauts on a distant planet toss a rock into...Ch. 2 - Prob. 53PCh. 2 - A hard rubber ball, released at chest height,...Ch. 2 - A man drops a rock into a well. (a) The man hears...Ch. 2 - Why is the following situation impossible? A...Ch. 2 - Two objects, A and B, are connected by a rigid rod...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rubber ball is attached to a paddle by a rubber band. The ball is initially moving away from the paddle with a speed of 5.5 m/s. After 0.35 s, the ball is moving toward the paddle with a speed of 5.5 m/s. What is the average acceleration of the ball during that 0.35 s? Give magnitude and direction.arrow_forwardThe resultant of the three cable t2ensions acting on the flagpole is the force R = RK. Find T1, T2, and R given that T3 = 500 N.arrow_forwardA rocket starts from rest and moves upward from the surface of the earth. For the first 10.0 s of its motion, the vertical acceleration of the rocket is given by ay= (2.80 m/s^3)t, where the +y direction is upward. a) What is the height of the rocket above the surface of the earth at t = 10.0 s? b) What is the speed of the rocket when it is 325 m above the surface of the earth?arrow_forward
- An object is launched at a velocity of 37 m/s in a direction making an angle of 30° upward with the horizontal. What is the total flight time (between launch and touching the ground) of the object?a. t = 8.334 sb. t = 4.327 sc. t = 5.334 sd. t = 3.772 sarrow_forwardAt time t = 0 s, a puck is sliding on a horizontal table with a velocity 3.60 m/s, 35.0° above the +x axis. As the puck slides, a constant acceleration acts on it that has the following components: ax = -0.360 m/s² and ay = -0.980 m/s². What is the velocity of the puck at time t = 1.50 s? Hint: First find the x and y components of final velocities and then find the resultant magnitude and the angle.arrow_forwardAs some molten metal splashes, one droplet flies off to the east with initial velocity vi at angle i above the horizontal, and another droplet flies off to the west with the same speed at the same angle above the horizontal as shown in Figure P4.40. In terms of vi and i, find the distance between the two droplets as a function of time. Figure P4.40arrow_forward
- A basketball player is standing on the floor 10.0 m from the basket as in Figure P3.47. The height of the basket is 3.05 m, and he shoots the ball at a 40.0 angle with the horizontal from a height of 2.00 m. (a) What is the acceleration of the basketball at the highest point in its trajectory? (b) At what speed must the player throw the basketball so that the ball goes through the hoop without striking the backboard?arrow_forwardA golfer hits his approach shot at an angle of 50.0, giving the ball an initial speed of 38.2 m/s (Fig. P4.60). The ball lands on the elevated green, 5.50 m above the initial position near the hole, and stops immediately. a. How much time passed while the ball was in the air? b. How far did the ball travel horizontally before landing? c. What was the peak height reached by the ball? FIGURE P4.60arrow_forwardA student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vi = 18.0 m/s. The cliff is h = 50.0 m above a body of water as shown in Figure P4.13. (a) What are the coordinates of the initial position of the stone? (b) What are the components of the initial velocity of the stone? (c) What is the appropriate analysis model for the vertical motion of the stone? (d) What is the appropriate analysis model for the horizontal motion of the stone? (e) Write symbolic equations for the x and y components of the velocity of the stone as a function of time. (f) Write symbolic equations for the position of the stone as a function of time. (g) How long after being released does the stone strike the water below the cliff? (h) With what speed and angle of impact does the stone land? Figure P4.13arrow_forward
- A speedboat increases its speed uniformly from vi = 20.0 m/s to Vf = 30.0 m/s in a distance of 2.00 102 m. (a) Draw a coordinate system for this situation and label the relevant quantities, including vectors, (b) For the given information, what single equation is most appropriate for finding the acceleration? (c) Solve the equation selected in part (b) symbolically for the boats acceleration in terms of vf, vi, and x. (d) Substitute given values, obtaining that acceleration, (e) Find the time it takes the boat to travel the given distance.arrow_forwardTwo children are playing on a 151-m-tall bridge. One child drops a rock (initial velocity zero) at t = 0. The other waits 1.1 s and then throws a rock downward with an initial speed Vo. If the two rocks hit the ground at the same time, what is vo? m/sarrow_forwardAn aircraft performs a maneuver called an "aileron roll." During this maneuver, the plane turns like a screw as it maintains a straight flight path, which sets the wings in circular motion. If it takes it 21 s to complete the circle and the wingspan of the plane is 10.6 m, what is the acceleration of the wing tip? Express your answer in m/s².arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY