Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2CQ
To determine
The difference in what a person riding in the car feels in the two cases.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
SCSU physics and astronomy student club has a recently established tradition of pumpkin drop, from the top of Wick Science Building to the "moat" below street level. Although the "experimental data" have not been made public, there have been rumors of the drop took 2.20 seconds, i.e. falling from rest with negligible air drag. Based on the rumor, how tall is the building from the "moat" to the roof?
Ignore air drag or any rotation of pumpkins.
Hint: You may assume final position to be zero.
What is the use of the photogate timer?
Select one:
O To measure the acceleration.
O To measure the position.
O To reduce the friction.
O To measure the change in speed.
O To measure the time.
What is the use of air pump?
Select one:
To measure the speed.
O To measure the distance.
O To record the motion of the glider.
O To measure the position.
O To reduce the friction
I chose (C) and got my answer incorrect. I need help figuring out how to solve this and what the correct answer is.
Chapter 2 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are members of the highway patrol more interested...Ch. 2.4 - Using Active Figure 2.8, match each vxt graph on...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which of the following statements is true? (a) If...Ch. 2.7 - A ball is thrown upward. While the ball is in...Ch. 2 - One drop of oil falls straight down onto the road...Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 3OQCh. 2 - Prob. 4OQ
Ch. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - Prob. 8OQCh. 2 - As an object moves along the x axis, many...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - A hard rubber ball, not affected by air resistance...Ch. 2 - Prob. 14OQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 2CQCh. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - Prob. 6CQCh. 2 - Prob. 7CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 8PCh. 2 - A hare and a tortoise compete in a race over a...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - A particle moves along the x axis according to the...Ch. 2 - A student drives a moped along a straight road as...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Figure P2.15 shows a graph of vx versus t for the...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Prob. 17PCh. 2 - The minimum distance required to stop a car moving...Ch. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - The driver of a car slams on the brakes when he...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - A truck on a straight road starts from rest,...Ch. 2 - A particle moves along the x axis. Its position is...Ch. 2 - A speedboat travels in a straight line and...Ch. 2 - In a classic clip on Americas Funniest Home...Ch. 2 - Prob. 29PCh. 2 - A baseball is hit so that it travels straight...Ch. 2 - Prob. 31PCh. 2 - It is possible to shoot an arrow at a speed as...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - A ball is thrown directly downward with an initial...Ch. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A steam catapult launches a jet aircraft from the...Ch. 2 - An object is at x = 0 at t = 0 and moves along the...Ch. 2 - Colonel John P. Stapp, USAF, participated in...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - A ball starts from rest and accelerates at 0.500...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Prob. 45PCh. 2 - The Acela is an electric train on the...Ch. 2 - Liz rushes down onto a subway platform to find her...Ch. 2 - A commuter train travels between two downtown...Ch. 2 - Prob. 49PCh. 2 - A motorist drives along a straight road at a...Ch. 2 - Prob. 51PCh. 2 - Astronauts on a distant planet toss a rock into...Ch. 2 - Prob. 53PCh. 2 - A hard rubber ball, released at chest height,...Ch. 2 - A man drops a rock into a well. (a) The man hears...Ch. 2 - Why is the following situation impossible? A...Ch. 2 - Two objects, A and B, are connected by a rigid rod...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1.8 kg sits on top of a block with mass M = 5.6 kg which sits on a table. The coefficients of friction (both static A block with mass m= and kinetic) between all surfaces are u, = H = H=1 A string with negligible mass is connected to each mass and wraps halfway around a pulley with negligible mass, as shown in figure. What is the acceleration of the pulley, in m/s, at the instant the force, F= 92.63 N is applied on the pulley horizontally to the right as shown in figure? 9 = 10 m/s alınız) H = 1 F O 21.00 M O 25.20 O 700 O 4.90 O 1050arrow_forwardPrint the References and Equations Sheet and use it to complete this question. You also may use a calculator. A baseball with mass of 0.145 kg is thrown straight down at the ground. At a particular speed, it has a drag force of 0.4 N acting on it. What is its acceleration at that time? o - 12.6 m/s O -9.8 m/s o -7.0 m/s • -2.8 m/s 21 22 23 24 25 26 27 20 29 30 Next 203dcd7827cc5b4_56c0425f-37a7-4fd5-aae2-b91522206c9a/conceptld/SC1404AX_Summit_Honors_Physics 06_14_UT_CG/concept Chp fgarrow_forwardA black widow spider hangs motionless from a web that extends vertically from the ceiling above. If the spider has a mass of 1.5 g, what is the tension in the web?arrow_forward
- You have put a sonar device at the top of a frictionless inclined plane. That device allows you to measure the distance an object is from the device, as well as the speed and the acceleration of that object. If we decide that the origin (h = 0) is at the sonar device, we want to know what the height change is as we slide down the incline. For an angle below the horizontal of 9.74°, we see that our object has slid a distance 0.54 m, as measured along the incline itself. - Calculate the height change and report your answer as a negative number. (This value would be useful for calculating the change in gravitational potential energy, as we will do in the lab.) h=o earrow_forwardA rock is thrown upward with an initial speed of 18 m/s on Planet X, which has an acceleration due to gravity of 4.5 m/s2. There is no atmosphere on Planet X. a) How long does the rock take to reach its apex?arrow_forwardYou pull on a crate using a rope as in (Figure 1), except the rope is at an angle of 20.0 ∘∘ above the horizontal. The weight of the crate is 245 NN, and the coefficient of kinetic friction between the crate and the floor is 0.270. What must be the tension in the rope to make the crate move at a constant velocity? Express your answer with the appropriate units.arrow_forward
- Very large accelerations can injure the body, especially if they last for a considerable length of time. One model used to gauge the likelihood of injury is the severity index ( SI ), defined as SI=a5/2t . In the expression, t is the duration of the accleration, but a is not equal to the acceleration. Rather, a is a dimensionless constant that equals the number of multiples of g that the acceleration is equal to. In one set of studies of rear-end collisions, a person's velocity increases by 16.6 km/h with an acceleration of 33.0 m/s2 . Let the +x direction point in the direction the car is traveling. What is the severity index for the collision?SI = ?How far d does the person travel during the collision if the car was initially moving forward at 5.20 km/h?d = ? marrow_forwardYou have put a sonar device at the top of a frictionless inclined plane, as shown in the diagram below. That device allows you to measure the distance an object is from the device, as well as the speed and the acceleration of that object. If we decide that the origin (h = 0) is at the sonar device, we want to know what the height change is as we slide down the incline. 0 For an angle below the horizontal of 6.46, we see that our object has slid a distance 1.13 m, as measured along the incline itself. Calculate the height change in meters - and report your answer as a negative number. (This value would be useful for calculating the change in gravitational potential energy, as we will do in the lab.) h=o 10% O i 26 QUATU 99+ hp X 55 83°F 3:11 PM 10/16/2022 Ctrl 0arrow_forwardA city is trying to determine the speed limit for a given stretch of road. If a stop sign is visible from 62.0m on a straight, horizontal stretch of road and the coefficient of static friction between the road and the tires of a car is 0.525 then what is the maximum speed for a car in meters per second so that it can come to a complete stop at the stop sign?arrow_forward
- While a person is walking, his arms swing through approximately a 45 ∘ angle in 0.60 s. As a reasonable approximation, we can assume that the arm moves with constant speed during each swing. A typical arm is 70.0 cm long, measured from the shoulder joint. part A) What is the acceleration of a 1.6 g drop of blood in the fingertips at the bottom of the swing? Express your answer with the appropriate units. Part B) Find the force that the blood vessel must exert on the drop of blood in part A. Express your answer with the appropriate units. part C) What force would the blood vessel exert if the arm were not swinging? Express your answer with the appropriate units.arrow_forwardConsider an inclined plane with a 1 kg block on it. The plane makes an angle of 34 degrees with the horizontal. The block has a coefficient of kinetic friction equal to 0.26 with the incline. You apply a 30 N force horizontally on the block, in the direction pointing up the incline. Calculate the acceleration, in m/s2, of the block up the incline. (Use g = 10 m/s2) (Please answer to the fourth decimal place - i.e 14.3225)arrow_forwardIn each my sections of MCEG 1101 (PO1 & P02), a student was asked to toss a tennis ball in front of the screen upon which a grid was projected. Based on my slow-motion video recording of the ball tossed in Section P01, the following data was generated (also see uploaded Excel file "tennis ball toss trajectory"). x (grid units) 1 2 3 4 5 6 verti cal position, y (ft) 4 3.5 2.5 2 Based on these data, a parabolic trendline was developed, as shown in the plot below: 1.5 1 0.5 819 0 7 y (grid units) 0 3 5.3 6.5 6.7 5.8 4 0.9 0.5 1 x(ft) 0.55 1.1 1.65 2.2 2.75 3.3 3.85 4.4 Tennis Ball Toss Data from MCEG 1101-P01 y(ft) 0 1.5 1.65 2.915 3.575 3.685 3.19 2.2 0.495 y = -0.9307x² + 4.7619x - 2.3925 R² = 0.999 2.5 2 3.5 horizontal position, x (ft) 3 4 4.5 5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY