Concept explainers
A hard rubber ball, not affected by air resistance in its motion, is tossed upward from shoulder height, falls to the sidewalk, rebounds to a smaller maximum height, and is caught on its way down again. This motion is represented in Figure OQ2.13, where the successive positions of the ball Ⓐ through Ⓔ are not equally spaced in time. At point Ⓓ the center of the ball is at its lowest point in the motion. The motion of the ball is along a straight, vertical line, but the diagram shows successive positions offset to the right to avoid overlapping. Choose the positive y direction to be upward. (a) Rank the situations Ⓐ through Ⓔ according to the speed of the ball |vy| at each point, with the largest speed first. (b) Rank the same situations according to the acceleration ay of the ball at each point. (In both rankings, remember that zero is greater than a negative value. If two values are equal, show that they are equal in your ranking.)
Figure OQ2.13
Trending nowThis is a popular solution!
Chapter 2 Solutions
Principles of Physics: A Calculus-Based Text
- A thief is trying to escape from a parking garage after completing a robbery, and the thief’s car is speeding (v = 12 m/s) toward the door of the parking garage (Fig. P2.60). When the thief is L = 30 m from the door, a police officer flips a switch to close the garage door. The door starts at a height of 2.0 m and moves downward at 0.20 m/s. If the thief’s car is 1.4 m tall, will the thief escape?arrow_forwardA thief is trying to escape from a parking garage after completing a robbery, and the thief's car is speeding (v = 12 m/s) toward the door of the parking garage (Fig. P2.60). When the thief is L= 30 m from the door, a police officer flips a switch to close the garage door. The door starts at a height of 2.0 m and moves downward at 0.20 m/s. If the thief's car is 1.4 m tall, will the thief escape? Garage door L Figure P2.60arrow_forwardHello. I am working on a problem with motion. The questions asks me to calculate the maximum height (h1), total time (t2), and speed of a ball right before it hits the ground. The question states that A person is throwing a ball upward into the air with an initial speed Vo = 10m/s. Assume that the instant when the ball is released, the person's hand is at a height ho = 1.5m. The speed of the ball at its peak height is zero, and the question needs to be solved in ascending part and descending part. I don't understand how to solve for the maximum height. What is the correct formula to use and why? For other questions like this, I will be able to solve them if I know the formulas for the ascending of the ball and the descent of the ball as well as the explanation. Thank you. For the sake of the question, the ball is being thrown straight up.arrow_forward
- A thief is trying to escape from a parking garage after completing a robbery, and the thief’s car is speeding (v = 11 m/s) toward the door of the parking garage (Fig. P2.60). When the thief is L = 14 m from the door a police officer flips a switch to close the garage door. The door starts at a height of 7 m and moves downward at 0.3 m/s. If the thief’s car is 1.4 m tall, will the thief escape? (Find the height of the door above the ground).arrow_forwardWe are standing on the top of a 1040 feet tall building and launch a small object upward. The object's height, measured in feet, after t seconds is h(t) = 16t? + 128t + 1040. A) What is the object initial velocity? ft/second B) What is the highest point that the object reaches? feetarrow_forwardAt time t0=0.0s, a car, starting from rest, moves south. It continues moving south, and by time tf =121s, it has covered a distance of d=6689m. Take north as the positive x direction, as indicated in the figure. Part A: What is the car's average speed, in meters per second, during this period? Part B: What is the car's displacement, in meters, during this period? Part C: What is the car's average velocity, in meters per second, during this period? Part D: A different car, after starting from rest at t0 =0.0s, travels for the same period, tf =121s, attaining a final velocity of vf =−30.0m/s. What is this car's average acceleration, in meters per squared seconds, during the period described?arrow_forward
- A particle moving along the x-axis has its velocity described by the function v_x =2t2m/s=2t^2m/s, where t is in s. Its initial position is x_0 = 2.8 mm at t_0 = 0 s . At 1.7 s , what is the particle's position? At 1.7 s , what is the particle's velocity? At 1.7 s , what is the particle's acceleration?arrow_forwardA mischievous caracara sees a fisherman unscrew a shiny steel nut from a bolt on his ship while doing repairs in a harbor off the Falkland Islands. The fisherman watches helplessly as the bird picks up the nut and flies toward the shore. The bird flies due east at a constant speed of 5m/s and constant height of 11m . The bird flies directly over a person on the shoreline, dropping the nut at the instant they are above the person. Solve: How far from the person on the shoreline does the nut land?arrow_forwardA particle performs a one-dimensional motion with the position given by the time equation x(t) = 1,3t4 - 2,0t3, where x is given in meters and t is given in seconds. At time t=0, the particle starts its motion at the origin x=0. At what instant (in seconds) does the particle reverse its direction of motion?arrow_forward
- find correct option....arrow_forwardThe velocity of a particle is given by v = 23t2 - 110t + 52, where v is in meters per second and t is in seconds. Plot the velocity v and acceleration a versus time for the first 6.4 seconds of motion and evaluate the velocity when a is zero. Make the plots and then answer the questions. Questions: When t = 0.8 s, V = i m/s, a = i m/s2 When t = 3.7 s, V = i m/s, a = i m/s? When t = 4.7 s, V = i m/s, a = i m/s? When a = 0, V = m/sarrow_forwardPlease Asaparrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning