Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 4CQ
(a)
To determine
Whether the velocity of an object at an instant can be greater in magnitude than the average velocity over a time interval containing the instant.
(b)
To determine
Whether the velocity of an object at an instant can be lesser in magnitude than the average velocity over a time interval containing the instant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle moving along a straight line has initial velocity v(0)
= 1 m/s, and acceleration a(t) = sin(I-t) + cos(t+1) (in
m/s?).
(a.
Find the velocity at time t.
(b)
Find the average velocity during the time interval [I, 211].
(c)
Find the distance traveled during the time interval [1, 2I].
A car is traveling back and forth. Its velocity (in feet per second) after t seconds is given by v(t) = 9−3t.Determine the position of the car after four seconds if s(0) = 0 (where s(t) is the position functionfor the car).a)Find the total distance the car traveled from t = 0 to t = 4
The motion of a particle which moves along the straight line is defined by the
relation x(t) = t3 - 9t? + 24t – 8, where x and t are expressed in meters and
seconds respectively. Note that the coefficients of t have dimensions accordingly.
(a) Determine when the velocity of the particle is zero.
(b) Calculate the position vector and distance travelled by the particle when the
acceleration is zero. Consider that at the starting point time t = 0 sec.
(c) Does the particle move at constant velocity or constant acceleration? Justify
your answer.
Chapter 2 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are members of the highway patrol more interested...Ch. 2.4 - Using Active Figure 2.8, match each vxt graph on...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which of the following statements is true? (a) If...Ch. 2.7 - A ball is thrown upward. While the ball is in...Ch. 2 - One drop of oil falls straight down onto the road...Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 3OQCh. 2 - Prob. 4OQ
Ch. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - Prob. 8OQCh. 2 - As an object moves along the x axis, many...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - A hard rubber ball, not affected by air resistance...Ch. 2 - Prob. 14OQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 2CQCh. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - Prob. 6CQCh. 2 - Prob. 7CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - The position of a particle moving along the x axis...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 8PCh. 2 - A hare and a tortoise compete in a race over a...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - A particle moves along the x axis according to the...Ch. 2 - A student drives a moped along a straight road as...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Figure P2.15 shows a graph of vx versus t for the...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Prob. 17PCh. 2 - The minimum distance required to stop a car moving...Ch. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - The driver of a car slams on the brakes when he...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - A truck on a straight road starts from rest,...Ch. 2 - A particle moves along the x axis. Its position is...Ch. 2 - A speedboat travels in a straight line and...Ch. 2 - In a classic clip on Americas Funniest Home...Ch. 2 - Prob. 29PCh. 2 - A baseball is hit so that it travels straight...Ch. 2 - Prob. 31PCh. 2 - It is possible to shoot an arrow at a speed as...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - A ball is thrown directly downward with an initial...Ch. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A steam catapult launches a jet aircraft from the...Ch. 2 - An object is at x = 0 at t = 0 and moves along the...Ch. 2 - Colonel John P. Stapp, USAF, participated in...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - A ball starts from rest and accelerates at 0.500...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Prob. 45PCh. 2 - The Acela is an electric train on the...Ch. 2 - Liz rushes down onto a subway platform to find her...Ch. 2 - A commuter train travels between two downtown...Ch. 2 - Prob. 49PCh. 2 - A motorist drives along a straight road at a...Ch. 2 - Prob. 51PCh. 2 - Astronauts on a distant planet toss a rock into...Ch. 2 - Prob. 53PCh. 2 - A hard rubber ball, released at chest height,...Ch. 2 - A man drops a rock into a well. (a) The man hears...Ch. 2 - Why is the following situation impossible? A...Ch. 2 - Two objects, A and B, are connected by a rigid rod...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An object's position as a func of time is given by ; x(t) = - 200 (( t + 1 ) ^ - 1) + 6t^2. (Assume constants have proper SI Units) An object's instantaneous velocity at t = 3.00 seconds is 45.5 m/s What is the object's average velocity between t = 0 and t = 3.00 seconds? Answer is 68.0 m/s^2 What is the object's average acceleration between t = 0 and t = 3.00 s Answer : - 50.5 m/s^2arrow_forwardA student drops an object out the window of the top floor of a high-rise dormitory. (a) Neglecting air resistance, how fast is the object traveling when it strikes the ground at the end of 2.4 s? Express the speed in mi/h for a familiar comparison.arrow_forward(a) Can the instantaneous velocity of an object at an instant of time ever be greater in magnitude than the average velocity over a lime interval containing that instant? (b) Can it ever be less?arrow_forward
- (1) The position s(t) of an object moving along the x-axis is given by s(t) = 3t¹ – 8t³ . this problem s(t) is measured in meters, and t is measured in seconds. (a) What is the average velocity of the object over the interval [0, 2]? (b) (c) What is the instantaneous velocity of the object at t 2? 15 2 t². For Find all values of t in the interval [0, 5] when the object is momentarily stopped.arrow_forward(a) What is the magnitude of the average acceleration of a skier who, starting from rest, reaches a speed of 10.7 m/s when going down a slope for 4.81 s? (b) How far does the skier travel in this time?arrow_forwardThe acceleration of a particle is defined by the relation a= -k/v, where k is a constant. Since it is known that X=0 m and V=81 m/s at t=0 and V=36 m/s when X= 18 m; a) the velocity of the particle when X-20 m, b) Determine the time until the particle stops.arrow_forward
- An object's position in the as a function of time obeys the equation; x (t) = 3t – 2t³ + 1.5t where all constants have proper SI Units. What is the speed of the object in the x direction at t = 1.75 seconds?arrow_forwardA ball dropped from a state of rest at time t = 0 travels a distance s(t) = 4.9t 2 mint seconds. (a) How far does the ball travel during the time interval [2, 2.5]? (b) Compute the average velocity over [2, 2.5]. (c) Compute the average velocity for the time intervals in the table and estimate the ball's instantaneous velocity at t = 2.arrow_forwardA box was dropped from the top of a building. Which of the following is true regarding its displacement per second? (A) The distance covered by the falling box per second increases. (B) The distance covered by the falling box per second decreases. (C) The distance covered by the falling box per second remains constant. (D) I need more details to confirm any of these three statements.arrow_forward
- The motion of a particle is defined by the relation x = t4 – 19t3 + 78t² – 112t + 10 where x and t are expressed in millimeters and seconds, respectively. Determine: (a) When the velocity is zero, (b) the displacement, total distance traveled, average velocity during the time interval 0arrow_forwardAn automobile travels on a straight road for 34 km at 36 km/h. It then continues in the same direction for another 34 km at 72 km/h. (a) What is the average velocity of the car during this 68 km trip? (Assume that it moves in the positive × direction.) (b) What is the average speed?arrow_forwardAn aero-plane lands at a velocity of 670 m/s and has the variation of the acceleration by maximum rate of -5 m/s2 as it reaches to stopped position. (a) What will be the minimum duration required for this plane to reach to the rest after it touches the ground? (b) Is it possible for this plane to land on a runway of length 1600 m? m/s2 means meter per second square(unit of acceleration). anwer shold be detailed enough to understand,draw FBD where required. thankyou.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY