Concept explainers
-7 The truss A BC Shawn in the figure supports a horizontal load P1= 300 lb and a vertical load P2= 9001b. Both bars have a cross-sectional area A = 2.4 in2 and are made of steel with E = 30 X 106 psi.
(a) Determine the strain energy U1of the truss when the load P1acts alone (P2= 0).
(b) Determine the strain energy U2when the load P2acts alone (P1= 0).
(c) Determine the strain energy U3when both loads act simultaneously.
(a)
The strain energy of the truss when load
Answer to Problem 2.7.7P
The strain energy of the truss when load
Explanation of Solution
Given Information:
The length of the link BC is
The following figure shows the forces acting at joint
Figure-(1)
Write the expression for the length of the link AB.
Here, the length of the link BC is
Write the equilibrium equation for the horizontal forces.
Here, the force applied on the link
Write the equilibrium equation for the vertical forces.
Here, vertical force acting at
Write the expression for the strain energy of the truss.
Here, area of the cross-section of the link is
Calculation:
Substitute
Substitute
Substitute
Substitute
Conclusion:
The strain energy of the truss when load
(b)
The strain energy of the truss when load
Answer to Problem 2.7.7P
The strain energy of the truss when load
Explanation of Solution
Calculation:
Substitute
Substitute
Substitute
Conclusion:
The strain energy of the truss when load
(c)
The strain energy of the truss when both load acts simultaneously.
Answer to Problem 2.7.7P
The strain energy of the truss when both load acts simultaneously is
Explanation of Solution
Calculation:
Substitute
Substitute
Substitute
Conclusion:
The strain energy of the truss when both load acts simultaneously is =
Want to see more full solutions like this?
Chapter 2 Solutions
Mechanics of Materials (MindTap Course List)
- An aluminum bar subjected to tensile Forces P has a length L = 150 in. and cross-sectional area A = 2.0 in2 The stress-strain behavior of the aluminum may be represented approximately by the bilinear stress-strain diagram shown in the figure. Calculate the elongation S of the bar for each of the following axial loads: p = 8 kips, 16 kips. 24 kips, 32 kips, and 40 kips. From these results, plot a diagram of load P versus elongation S (load-displacement diagram).arrow_forwardA bar AB of length L and weight density y hangs vertically under its awn weight (see figure). The stress-strain relation forth? Material is given by the Romberg-Osgood equation [Eq. (2-71)]: Derive the formula For the elongation of the bar.arrow_forwardA circular aluminum tube of length L = 600 mm is loaded in compression by forces P (see figure). The outside and inside diameters are d2= 75 mm and d1= 63 mm, respectively. A strain gage is placed on the outside of the lube to measure normal strains in the longitudinal direction. Assume that E = 73 GPa and Poissons ratio is v = 0.33. (a) IF the compressive stress in the tube is 57 MPa, what is the load P? (b) If the measured strain is e = 78 J X 10-6, what is the shorteningarrow_forward
- A copper wire having a diameter ofd = 4 mm is bent into a circle and held with the ends just touching (see figure), If the maximum permissible strain in the copper is = 0.0024, what is the shortest length L of wire that can be used? If L = 5.5 m, what is the maximum acceptable diameter of the wire if the maximum normal strain must remain below yield? Assume E = 120 GPa and(7K= 300 MPa.arrow_forwardA prismatic bar AD of length L, cross-sectional area A. and modulus of elasticity E is subjected to loads 5P, 3P, and P acting at points B, C, and D, respectively (see figure). Segments AB, BC, and CD have lengths L/6, L/2, and L/3, respectively. (a) Obtain a formula for the strain energy U of the bar. (b) Calculate the strain energy if P = 6 kips, L = 52 in., A = 2.76 in2, and the material is aluminum with E = 10.4 × 106 psi.arrow_forwardSolve the preceding problem if the cube is granite (E = 80 GPa, v = 0.25) with dimensions E = 89 mm and compressive strains E = 690 X l0-6 and = = 255 X 10-6. For part (c) of Problem 7.6-5. find the maximum value of cr when the change in volume must be limited to 0.11%. For part. find the required value of when the strain energy must be 33 J.arrow_forward
- 7.5-11 in. cube of concrete (E = 4.5 X 106 psi. v = 0.2) is compressed in biaxial stress by means of a framework that is loaded as shown in the figure. Assuming that each load F equals 25 kips. determine the change iv in the volume of the cube and the strain energy U stored in the cube.arrow_forwardA rigid bar AB is pinned al end A and is supported by a wine CD and loaded by a force P at end B (see figure). The wire is made of high-strength steel having a modulus of elasticity E = 210 GPa and yield stress ??Y= 820 MPa. The length of the wire is L = 1.0 m. and its diameter is d = 3 mm. The stress-strain diagram for the steel is defined by the riuniift-ed power taw. asarrow_forwardA slightly tapered bar AB of rectangular cross section and length L is acted upon by a force P (see figure). The width of the bar varies uniformly From b2at end A to b1at end B. The thickness t is constant. (a) Determine the strain energy U of the bar. (b) Determine the elongation ?? of the bar by equating the strain energy to the work done by the force P.arrow_forward
- During a tension lest of a mild-steel specimen (see figure), the extensometer shows an elongation of 0.00120 in. with a gage length of 2 in. Assume that the steel is stressed below the proportional limit and that the modulus of elasticity E = 30 × 10 psi. (a) What is the maximum normal stress (j^, in the specimen? (b) What is the maximum shear stress tmax? (c) Draw a stress element oriented at an angle of 45° to the axis of the bar, and show all stresses acting on the faces of this element.arrow_forwardTruss members supporting a roof are connected to a 26-mm-thick gusset plate by a 22-mm diameter pin, as shown in the figure and photo. The two end plates on the truss members are each 14 mm thick. (a) If the load P = 80 kN, what is the largest bearing stress acting on the pin? (b) If the ultimate shear stress for the pin is 190 MPa, what force Pult is required to cause the pin to fail in shear? Disregard friction between the plates.arrow_forwardAn elastomeric bearing pad consisting of two steel plates bonded to a chloroprene elastomer (an artificial rubber) is subjected to a shear force V during a static loading test (see figure). The pad has dimensions a = 125 mm and b = 240 mm, and the elastomer has a thickness t = 50 mm. When the Force V equals 12 kN, the top plate is found to have displaced laterally S.O mm with respect to the bottom plate. What is the shear modulus of elasticity G of the chloroprene?arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning