The main cables of a suspension bridge (see figure part a) follow a curve that is nearly parabolic because the primary load on the cables is the weight of the bridge deck, which is uniform in intensity along the horizontal. Therefore, represent the central region AOB of one of the main cables (see part b of the figure) as a parabolic cable supported at points A and B and carrying a uniform load of intensity q along the horizontal. The span of the cable is L, the sag is /i, the axial rigidity is EA\ and the origin of coordinates is at mid span. (a) Derive the following formula for the elongation of cable AOB shown in part b or the figure: (b) Calculate the elongation 5 of the central span of one of the main cables of the Golden Gate Bridge for which the dimensions and properties are L = 4200 ft, h = 470 ft, q = 12,700 lb/ft, and E = 23,300,000 psi The cable consists of 27,572 parallel wires of diameter 0.196 in. Hint: Determine the tensile force Tal any point in the cable from a free-body diagram of part of the cable; then determine the elongation of an element of the cable of length ds: finally, integrate along the curve of the cable to obtain an equation for the elongation £.
The main cables of a suspension bridge (see figure part a) follow a curve that is nearly parabolic because the primary load on the cables is the weight of the bridge deck, which is uniform in intensity along the horizontal. Therefore, represent the central region AOB of one of the main cables (see part b of the figure) as a parabolic cable supported at points A and B and carrying a uniform load of intensity q along the horizontal. The span of the cable is L, the sag is /i, the axial rigidity is EA\ and the origin of coordinates is at mid span. (a) Derive the following formula for the elongation of cable AOB shown in part b or the figure: (b) Calculate the elongation 5 of the central span of one of the main cables of the Golden Gate Bridge for which the dimensions and properties are L = 4200 ft, h = 470 ft, q = 12,700 lb/ft, and E = 23,300,000 psi The cable consists of 27,572 parallel wires of diameter 0.196 in. Hint: Determine the tensile force Tal any point in the cable from a free-body diagram of part of the cable; then determine the elongation of an element of the cable of length ds: finally, integrate along the curve of the cable to obtain an equation for the elongation £.
The main cables of a suspension bridge (see figure part a) follow a curve that is nearly parabolic because the primary load on the cables is the weight of the bridge deck, which is uniform in intensity along the horizontal. Therefore, represent the central region AOB of one of the main cables (see part b of the figure) as a parabolic cable supported at points A and B and carrying a uniform load of intensity q
along the horizontal. The span of the cable is L, the sag is /i, the axial rigidity is EA\ and the origin of coordinates is at mid span.
(a) Derive the following formula for the elongation of cable AOB shown in part b or the figure:
(b) Calculate the elongation 5 of the central span of one of the main cables of the Golden Gate Bridge for which the dimensions and properties are L = 4200 ft,h = 470 ft, q = 12,700 lb/ft, and E = 23,300,000 psi The cable consists of 27,572 parallel wires of diameter 0.196 in.
Hint: Determine the tensile force Tal any point in the cable from a free-body diagram of part of the cable; then determine the elongation of an element of the cable of length ds: finally, integrate along the curve of the cable to obtain an equation for the elongation £.
(6) Determine the sizes of fuel orifice to give a 13.5 air fuel ratio, if the venture throat has 3 cm diameter and the
pressure drop in the venture is 6.5 cm Hg. The air temperature and pressure at carburetor entrance are 1 bar and
27 °C respectively. The fuel orifice is at the same level as that of the float chamber. Take density of gasoline as
(7 deg.)
740 kg/m³ and discharge coefficient as unity. Assume atmospheric pressure to be 76 cm of Hg.
(7) A four-cylinder, four-stroke internal combustion engine has a bore of 87 mm. and a stroke of 77 mm. The
clearance volume is 17% of the stroke volume and the engine with speed of 2700 rpm. The processes within
each cylinder are modeled as an Otto cycle with a pressure of 1 atm and a temperature of 17 °C at the beginning
(7 deg.)
of compression. The maximum temperature in the cycle is 2717 °C
(a) Draw the P-v diagram; label Pressures, Temperatures, Qin, and Qual
(b) Calculate the mass of air at the beginning of the cycle
(c) Calculate the…
University of Babylon
College of Engineering\Al-Musayab
Automobile Engineering Department
Final Examination/1st Attempt
جامعة بابل
Subject: I. C. Engines I
Maximum Time: 3 Hours
Class: 3rd
Date:
/ / 2023
Answer 07 of the following questions
(First Semester) 2022/2023
(1) Choose the correct answer for eight only from below
1- Indicator diagram shows for one complete revolution of crank
Maximum mark: 50 Deg.
a) variation of kinetic heat in the cylinder. b) variation of pressure head in the cylinder
c) variation of kinetic and pressure heat in the cylinder. d) none of the above.
2- A carburetor is used to supply
(a) petrol, air and lubricating oil (b) air and diesel (e) petrol and lubricating oil (d) petrol and air.
3- In a four stroke cycle petrol engine, the charge is compressed when
a) inlet valve is closed. b) exit valve is closed.
c) both inlet and exit valves are closed. d) both inlet and exit valves are open.
(8 deg.)
4- For an engine operating on air standard Otto cycle, the…
1,1
51
K/s ..
زيد عامر
اليوم عند 9:34 م
۱۷۲ من ۱۷۳
University of Babylon
College of Engineering Al-Musayab
Automobile Engineering Department
Final Examination/1" Attempt
T19:34
Subject: 1. C. Engines I
Maximum Time: 3 Hours
Class: 3
Date:
1 / 2023
Answer 07 of the following questions
(First Semester) 2022/2023
(1) Choose the correct answer for eight only from below
1- Indicator diagram shows for one complete revolution of crank
Maximum mark: 50 Deg.
a) variation of kinetic heat in the cylinder. b) variation of pressure head in the cylinder
e) variation of kinetic and pressure heat in the cylinder, d) none of the above.
2- A carburetor is used to supply
(a) petrol, air and lubricating oil (b) air and diesel (c) petrol and lubricating oil (d) petrol and air.
3- In a four stroke cycle petrol engine, the charge is compressed when
a) inlet valve is closed. b) exit valve is closed.
e) both inlet and exit valves are closed. d) both inlet and exit valves are open.
(8 deg.)
4- For an engine…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY