FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.48P
(a)
To determine
The electric power required, in kW.
(b)
To determine
The power developed by the output shaft, in kW.
(c)
To determine
The average surface temperature, Ts, in °C
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Thermodynamics 1
Pls answer asap thankyou
Steam in a piston-cylinder assembly undergoes a polytropic process, with n = 2, from an initial state where V1 = 2.63160 ft³, p1 = 400
Ib;/in?, and u1 = 1322.4 Btu/lb to a final state where u2 = 1036.0 Btu/lb and v2 = 3.393 ft/lb. The mass of the steam is 1.5 lb. Changes in
kinetic and potential energy can be neglected.
Determine the change in volume, in ft3, the energy transfer by work, in Btu, and the energy transfer by heat, in Btu.
For a refrigerator or air conditioner, the coefficient
of performance K (often denoted as COP) is the
ratio of cooling output Qc to the required
electrical energy input W, both in joules. The
coefficient of performance is also expressed as a
ratio of powers,
|Qc\/t
K
|W\/t
where |Qc|/t is the cooling power and W/t is
the electrical power input to the device, both in
watts. The energy efficiency ratio (EER) is the
same quantity expressed in units of Btu for Qc
and W h for W|.
Part A
Derive a general relationship that expresses EER in terms of K.
Express your answer in terms of K.
EER =
Submit
Request Answer
Chapter 2 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The molar heat capacities of substances varies with temperature. The general function for determining the molar heat capacity is given below; Cp = ( a + b T + c T 2 )R . In case of a gas where a = 3.245, b = 7.108 x10 ^-4 K ^-1 , and c = -4.06 x10^ -8 K ^-2 for temperatures in the range of 300 Kelvins to 1,500 Kelvins. What is the heat capacity (in Joules per Kelvin per mole) of this gas at 1,500 kelvins? NOTE: Express answer in THREE SIGNIFICANT FIGURES.arrow_forwardThe molar heat capacities of substances varies with temperature. The general function for determining the molar heat capacity is given below; Cp m = (a + bT + cT 2 )R . In case of a gas where a = 3.245, b = 7.108 x10^ -4 K ^-1 , and c = -4.06 x10 ^-8 K^ -2 for temperatures in the range of 800 Kelvins to 1,500 Kelvins. What is the change in the enthalpy (in KiloJoules per Kelvin per mole) for two moles of this gas at 1,500 kelvins? NOTE: Express answer in THREE SIGNIFICANT FIGURES.arrow_forward8. thermodynamicsarrow_forward
- 1. A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes: Process 1-2: Compression with PV = constant, from P₁ = 1 bar, V₁ = 2 m³ to V₂ = 0.2 m³, U₂ − U₁ = 100 kJ; 2 Process 2-3: Constant volume to P3 = P₁; Process 3-1: Constant-pressure and adiabatic process. Neglect the changes of kinetic and potential energy in all three processes. (a) Sketch the cycle on a P-V diagram; (b) Determine the net work (i.e., W12 + W23 + W31) of the cycle, in kJ; (c) Determine the heat transfer for process 2-3, in kJ. Hint: System's state variables remain unchanged after a cycle, i.e. (U₂ − U₁) + (U3 − U₂) + (U₁ − U3) = 0arrow_forwardP1.2 Which of the characteristics associated with the systems listed below are properties? Which are not? Explain. (a) The system is the heating element of an electric iron. The characteristics are: (i) the mass, (ii) the electrical resistance, (iii) the temperature, (iv) the number of hours of operation and (v) the total watt- hours of electrical energy consumed. (b) The system is the battery of an automobile. The characteristics are: (i) the mass, (ii) the voltage, (iii) the temperature, (iv) the internal resistance, (v) the number of hours of operation and (vi) the total watt- hours of energy delivered.arrow_forward2.44 As shown in Fig. P2.44, the 6-in.-thick exterior wall of a building has an average thermal conductivity of 0.32 Btu/h ft °R. At steady state, the temperature of the wall decreases linearly from T to T, on the outer surface. The outside ambient air temperature is To coefficient is 5.1 Btu/h ft °R. Determine (a) the temperature T in °F, and (b) the rate of heat transfer through the wall, in Btu/h per ft of surface area. 70°F on the inner surface 25°F and the convective heat transferarrow_forward
- 4. (2)arrow_forward* Your answer is incorrect. A piston-cylinder assembly contains 0.7 lb of propane. The propane expands from an initial state where p₁ = 60 lbf/in.² and T₁ = 70°F to a final state where p₂ = 10 lbf/in.² During the process, the pressure and specific volume are related by pv² = constant. Determine the energy transfer by work, in Btu. W = i 3.123 Btuarrow_forwardAt steady state, a heat pump driven by an electric motor maintains the interior of a building at TH=293 K. The rate of heat transfer, in kJ/h, from the building through its walls and roof is given by 8000(TH-TC), where Tc is the outdoor temperature. Determine the minimum electric power, in kW, required to drive the heat pump for Tc = 276 K. (W cycle) min = i eTextbook and Media Save for Later kW Attempts: 0 of 5 used Submit Answerarrow_forward
- * Your answer is incorrect. A gas undergoes a process in a piston-cylinder assembly during which the pressure-specific volume relation is pv¹.2 = constant. The mass of the gas is 0.4 lb and the following data are known: p₁ = 160 lbf/in.², V₁ = 1 ft³, and p2 = 300 lbf/in.² During the process, heat transfer from the gas is 2.1 Btu. Kinetic and potential energy effects are negligible. Determine the change in specific internal energy of the gas, in Btu/lb. Δu = i | 76.53 Btu/lbarrow_forwardThermodynamics. please answer the 2 questionn, i will give a good feedback. thank you, show solution step by step.arrow_forwardThree-tenths kilogram of a gas is contained within a piston-cylinder assembly. The gas undergoes a process for which the pressure-volume relationship is PVA1.6 = constant. The initial pressure is 73 psi, the initial volume is 10 ft3, and the final volume is 15 ft3. The change in specific internal energy of the gas in the process is 35 kJ/kg. There are no significant changes in kinetic or potential energy. Determine the net heat transfer for the process, in kJ. Select one: а. 11.66 b. -4.4 С. 40.8 d. 61.8arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license