FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.5CU
To determine
The change in specific kinetic energy of the system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of
A gas
three processes:
Process 1-2: Constant volume, V = 0.06 m², U2 - U, = 40.4 kJ
Process 2-3: Expansion with PV = constant, U3 - U2= 0
Process 3-1: Constant pressure, P =3 bar, W31 = (-20) kJ
There are no significant changes in kinetic or potential energy.
%3D
Identify the process on a sketch of p-V diagram plotted for the cycle.
Formulate the expression for heat transfer for process 2-3 and process 3-1.
(Hint: Apply first law of thermodynamics for closed systems)
(a)
(b)
(c)
Solve to find the net-work for the cycle and heat transfer for the process 2-3 and
Heat transfer for process 3-1, in kJ
Identify if the above system executes a power cycle or a refrigeration cycle. Give
(d)
reason.
1.19) A thermodynamic cycle involves the following 4 processes. Draw the cycle on a single PT diagram.
(a) An isobaric heating from 500 K and 400 kPa to a temperature of 700 K
(b) An isothermal compression to a pressure of 800 kPa
(c) An isobaric cooling to a temperature of 500 K
(d) An appropriate isothermal expansion to close the cycle
Note: The chart should be drawn to scale, neatly accurately. Use a ruler and label your axis.
Find the temperature in degree C at state 4 to 2 deciamal places.
QUESTION 35
The following processes occurs in a reversible thermodynamic cycle:
1-2: Reversible polytropic compression at pressure X] bar at volume [M] m° to a pressure [Z] bar and specific
volume [A] m°/kg. The index of compression may be taken as n.
2-3: Reversibly expansion with expansion index of 2 to pressure [B] bar.
3-1: Reversible cooling at constant volume to the initial state.
Calculate the work done for the constant volume process?
Click Save and Submit to save and submit. Click Save All Answers to save all answers.
Save All Answers
Type here to search
由
acer
Chapter 2 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Based on the first law of thermodynamics, which of the following is wrong? A the heat transfer equal the work plus energy change B the net heat transfer equals the net work of the cycle c) the heat transfer cannot exceed the work done D the net heat transfer equals the energy change if no work is donearrow_forwardThermodynamics 1 Pls answer asap thankyouarrow_forwardTutorial 01: From your previous study of thermodynamics and general knowledge define the following terms: 1. Energy 2. First law of Thermodynamics 3. Law of Conservation of Energy 4. Carnot Cycle 5. Closed system 6. Internal Energy 7. Second law of Thermodynamics 8. Rankine Cycle 9. Power Plant 10. Types of Energy 11. Turbine 12. Cooling Tower 13. Condenser 14. Evaporator 15. Saturation Temperature 16. Saturated Vapor 17. Super-heated Vapor 18. Degree of super-heatedarrow_forward
- ** I mainly just need help with process 4-1. I do not remember PV constants well.arrow_forwardThe figure below provides steady-state operating data for an ideal vapor-compression refrigeration cycle with Refrigerant 134a as the working fluid. The mass flow rate of refrigerant is 30.59 lb/min. State 3 Expansion valve -4 Hot region 5 Cout Condenser Compressor mi = 30.59 Evaporator Oin Cold region lb min W р T h S (lbf/in.2) (°F) (Btu/lb) (Btu/lb.°R)arrow_forwardThermodynamics studies the relationship between temperature, energy, and work, and describes how energy changes from one form to another. A refrigeration cycle is a practical example of the application of thermodynamics. It is based on thermodynamic principles, such as energy conservation and heat transfer from a higher temperature region to a lower temperature region. The most common refrigeration cycle is the steam evolution cycle. It involves four main steps: upgrades, condensing, expanding, and evaporating.The study and understanding of thermodynamics are essential for designing efficient refrigeration systems, improving energy efficiency and understanding the behavior of refrigeration systems under different operating conditions. 2nd Step: Evaluate the performance of Refrigerator 2.Refrigerator 2 is a refrigerator that operates as an ideal vapor refrigeration cycle, and uses the same refrigerant fluid and the same evaporation and condensation temperatures as Refrigerator 1.In…arrow_forward
- Thermodynamics studies the relationship between temperature, energy, and work, and describes how energy changes from one form to another. A refrigeration cycle is a practical example of the application of thermodynamics. It is based on thermodynamic principles, such as energy conservation and heat transfer from a higher temperature region to a lower temperature region. The most common refrigeration cycle is the steam evolution cycle. It involves four main steps: upgrades, condensing, expanding, and evaporating.The study and understanding of thermodynamics are essential for designing efficient refrigeration systems, improving energy efficiency and understanding the behavior of refrigeration systems under different operating conditions. 1st Step: Evaluate the performance of the Refrigerator 1.Refrigerator 1 operates as a reverse Carnot cycle using R-717 as refrigerant at a flow rate of 1.8 kg/s. The condensing and evaporating temperatures are 25 °C and -5 °C, respectively.To evaluate the…arrow_forwardA closed thermodynamic system undergoes a cycle comprising four processes 1- 4. The following amount of heat is transferred through the system boundaries: Process 1: 50 kJ heat added to the system Process 2: 80 kJ heat removed from the system Process 3: 100 kJ heat added to the system Process 4: 40 kJ heat removed from the system What is the net work done in this cyclic process?arrow_forwardThermodynamicsarrow_forward
- Please answer these 2 questionsarrow_forwardA cycle composed of three processes, 1-2: constant volume.2-3 expansion with PV = constant and 3-1: constant pressure, occurs in a piston cylinder assembly. V1=0.025 m^3. U2-U1= 26.4 kJ. P1= 1.8 bar. U2=DU3. Work of process 3-1 is equal to -12.3 kJ. Determine the relative increase in the value of Qcycle if the process 2-3 is replaced by a polytropic process with n=1.3. Select one: a. 68 % b. 70 % c. 38 % d. 51 % e. 46 %arrow_forwardThermodynamics: “Steam Engines with Clearance and Polytropic Expansion and Compression” 1.Locate the Processes of the given P-v indicator diagram and area under the process when computing work done per cycle using p-v indicator diagram. 2. Derive work done per cycle and mean effective pressure.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License