FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.45CU
To determine
If the given statement about forced convection is true or false.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Thermodynamics 1
A thermodynamics steady flow system receives 4.56 kg/min of a fluid where the
pressure is 137.9 Kpa specific volume of 0.0388 m3/kg, velocity of 122m/s and internal
energy of 1,160 Kj/Kg. the fluid leaves the system at a boundary where pressure is
551.6Kpa , specific volume of 0.193 m3/kg , velocity of 183 m/s and internal energy of
52.8 Kj/kg. during the passage through the system, the fluid receives 3,000 Joules/s of
heat. Determine the steady flow work in. Kj/min and kj/s
5. The wall of an oven consists of a 0.25-inch-thick layer of steel with a thermal conductivity
of 8.7 Btu/(h-ft-ᵒR) and a layer of brick with a thermal conductivity of 0.42 Btu/(h-ft-°R).
At steady state, a temperature decrease of 1.2°F occurs over the steel layer. The inner
temperature of the steel layer is 540°F. If the temperature of the outer surface of the brick
must be no greater than 105°F, determine the minimum thickness of the brick, in
inches, that ensures that this limit is met.
T₁ = 540°F
Steel
AT = -1.2°F
L₂=0.25 in.-
- Brick
·Lb
-T₁ ≤ 105°F
Chapter 2 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Thermodynamics studies the relationship between temperature, energy, and work, and describes how energy changes from one form to another. A refrigeration cycle is a practical example of the application of thermodynamics. It is based on thermodynamic principles, such as energy conservation and heat transfer from a higher temperature region to a lower temperature region. The most common refrigeration cycle is the steam evolution cycle. It involves four main steps: upgrades, condensing, expanding, and evaporating.The study and understanding of thermodynamics are essential for designing efficient refrigeration systems, improving energy efficiency and understanding the behavior of refrigeration systems under different operating conditions. 2nd Step: Evaluate the performance of Refrigerator 2.Refrigerator 2 is a refrigerator that operates as an ideal vapor refrigeration cycle, and uses the same refrigerant fluid and the same evaporation and condensation temperatures as Refrigerator 1.In…arrow_forwardThermodynamics studies the relationship between temperature, energy, and work, and describes how energy changes from one form to another. A refrigeration cycle is a practical example of the application of thermodynamics. It is based on thermodynamic principles, such as energy conservation and heat transfer from a higher temperature region to a lower temperature region. The most common refrigeration cycle is the steam evolution cycle. It involves four main steps: upgrades, condensing, expanding, and evaporating.The study and understanding of thermodynamics are essential for designing efficient refrigeration systems, improving energy efficiency and understanding the behavior of refrigeration systems under different operating conditions. 1st Step: Evaluate the performance of the Refrigerator 1.Refrigerator 1 operates as a reverse Carnot cycle using R-717 as refrigerant at a flow rate of 1.8 kg/s. The condensing and evaporating temperatures are 25 °C and -5 °C, respectively.To evaluate the…arrow_forwardEach of the following statements describes a way of coping with temperature variation. Which scenario most likely includes positive heat transfer through convection? That is, in which scenario does Hconvection most likely have a positive (+) sign? Hanimal = +SR + IRin – IRout +/- Hconvection +/- Hconduction - Hevaporation + Hmetabolic Select one: a. A rabbit basking in the sun early in the morning. b. A lizard resting in the shade in a hot desert in the middle of the day. c. A bumblebee vibrating its flight muscles before flight. d. A ground squirrel hibernating in the winter. e. A bird fluffing its feathers on a cold day.arrow_forward
- Derive the seven general property equation of the following thermodynamics processes: a. POLYTROPIC PROCESSarrow_forward1. In system, no mass can cross its boundary. However, it only allows energy transfer across its boundary o Control system o Closed system o Isolated system 2. Heat transferred to a system and work done by a system are always positive. o True o False 3. —— is a device that decreases the velocity of a fluid by increasing its pressure. o Nozzle o Diffuser o Compressor o Turbine 4. A heat engine may not reject any heat to a low-temperature reservoir and still can complete a cycle. o True o False 5. Heat is removed from the compartment of a refrigerator at a rate of 250 kJ/min. The refrigerator consumes 0.8 kW, determine the COP of the refrigerator. 6. It has been proved experimentally by joule that the internal energy is a function of o Temperature only o Pressure only o Volume only o All together 7. The combination of flow energy and internal energy gives - 8. A process during which there is no heat transfer o Adiabatic o Isentropic o Polytropic o Isothermal 9. Heat is transferred to a…arrow_forwardThermo 12arrow_forward
- Biotransport Phenomenaarrow_forward24 kg/s of steam enters a condenser at a pressure of 0.08 bar and quality of 0.72 and exits as saturated liquid at the same pressure. What is the mass flow rate of cooling water if the temperature rise of cooling water is 12 oC and its specific heat equals 4.2 kJ/kg.k? Select one: a. 1121.45 kg/s b. 1721.45 kg/s c. 1421.45 kg/s d. 823.92 kg/sarrow_forwardAt steady state, a heat pump driven by an electric motor maintains the interior of a building at TH=293 K. The rate of heat transfer, in kJ/h, from the building through its walls and roof is given by 8000(TH-TC), where Tc is the outdoor temperature. Determine the minimum electric power, in kW, required to drive the heat pump for Tc = 276 K. (W cycle) min = i eTextbook and Media Save for Later kW Attempts: 0 of 5 used Submit Answerarrow_forward
- What are some interesting application of thermodynamics in our daily life?arrow_forwardTHERMODYNAMICS 1. Calculate the amount of energy required in BTU to heat the air in a house 30 by 50 by 40 ft from 10 to 70°F at constant pressure. 2. Brine enters a cooler at the rate of 50 m3/hr at 15°C and leaves at 1°C. Specific heat and specific gravity of brine are 1.07 kJ/kg–K and 1.1 respectively. Calculate the heat transferred in kW. 3. How many BTU/min is required to produce 10 metric tons of ice per day at -10°C from raw water at 22°C? The latent heat of fusion of ice is 335 kJ/kg.arrow_forwardDuring a warm summer night, the air inside a house is maintained at a fixed temperaturevia an air conditioning system. Separating the inside air from the outside air is a plane wall.The inner surface of the wall exchanges energy with the air inside the house via convection;the outer surface of the wall exchanges energy with the surrounding air via convection andthe night sky via radiation. Known system parameters are listed below.Inner air temperature ?? = 26°CSurrounding air temperature ?∞ = 33°CNight sky temperature ?? = 4°CWall thermal conductivity ?Wall-air convection coefficient ℎ = 30 W/m2-KWall emissivity ? = 0.85Wall thickness ?a) Set up the equations that you allow you to calculate the heat flux through the wall.Keep everything symbolic and be careful with your heat transfer directions.Hint: If the AC is on, what does that tell you about the net direction of heat transfer?b) Write a computer script that calculates the heat flux through the wall for 20 values ofthe ratio of the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY