FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.25P
(a)
To determine
The volume at state 2.
(b)
To determine
Understand the work for the different processes and find the numerical values.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. A gas undergoes a thermodynamic cycle consisting of the following processes:i) Process 1-2: Constant pressure p1 = 1.4 bar, V1=0.028 m3, W1-2=10.5 kJii) Process 2-3: Compression with pV=Constant, U3=U2iii) Process 3-1: Constant Volume, U1-U3 = -26.4 kJThere are no significant changes in KE and PEi) Sketch the cycle on a p-V diagramii) Calculate the network for the cycle in kJiii) Calculate the heat transfer for process 1-2iv) Show that ƩW = ƩQ
Carbon dioxide (CO2) contained within a piston cylinder undergoes three
processes in series:
=
p1 10 bar, V₁ = 0.25 m³, to V₂ = 2.3 m³ during
Process 12: Expansion from
which the pressure-volume relationship is pV = constant
Process 23: Constant volume heating from state 2 to state 3 where p3 = 10 bar
Process 31: Constant pressure compression to the initial state.
Sketch (don't have to use a computer) the process in series on a pV diagram (p on y-axis, V
on x-asix) and evaluate the moving boundary work for each process.
Thermodynamics 1
Pls answer asap thankyou
Chapter 2 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of A gas three processes: Process 1-2: Constant volume, V = 0.06 m², U2 - U, = 40.4 kJ Process 2-3: Expansion with PV = constant, U3 - U2= 0 Process 3-1: Constant pressure, P =3 bar, W31 = (-20) kJ There are no significant changes in kinetic or potential energy. %3D Identify the process on a sketch of p-V diagram plotted for the cycle. Formulate the expression for heat transfer for process 2-3 and process 3-1. (Hint: Apply first law of thermodynamics for closed systems) (a) (b) (c) Solve to find the net-work for the cycle and heat transfer for the process 2-3 and Heat transfer for process 3-1, in kJ Identify if the above system executes a power cycle or a refrigeration cycle. Give (d) reason.arrow_forwardInitially contains Air: P1 = 30 lbf/in^2 T1 = 540 °F V1 = 4 ft^3 Second phase of process involving Air to a final state: P2 = 20 lbf/in^2 V2 = 4.5 ft^3 Wheel transfers energy TO the air by WORK at 1 Btu. Energy transfers TO the air by HEAT at 12 Btu. Ideal Gas Behavior. Wpw =-1 Btu Ima Determine whether the piston's work is done ON the system or BY the system. Q = -12 Btu Air Wpist = ? Initially, p₁ = 30 lbf/in.², T₁ = 540°F, V₁ = 4 ft³. Finally, p2 = 20 lbf/in.², V₂ = 4.5 ft³.arrow_forward1. A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes: Process 1-2: Compression with PV = constant, from P₁ = 1 bar, V₁ = 2 m³ to V₂ = 0.2 m³, U₂ − U₁ = 100 kJ; 2 Process 2-3: Constant volume to P3 = P₁; Process 3-1: Constant-pressure and adiabatic process. Neglect the changes of kinetic and potential energy in all three processes. (a) Sketch the cycle on a P-V diagram; (b) Determine the net work (i.e., W12 + W23 + W31) of the cycle, in kJ; (c) Determine the heat transfer for process 2-3, in kJ. Hint: System's state variables remain unchanged after a cycle, i.e. (U₂ − U₁) + (U3 − U₂) + (U₁ − U3) = 0arrow_forward
- 1Kg of water contained in a piston-cylinder assembly undergoes five processes in series as follows: Process 1-2: constant pressure heating at 10 bar from saturated vapor Process 2-3: constant volume cooling to P; = 5 bar and T; = 180°C Process 3-4: constant pressure compression to x=0.45 Process 4-5: constant volume heating to Ps = P1 Process 5-1: constant pressure heating to saturated vapor a. Sketch the above processes on both T-v and P-v diagrams b. Find quality at point 5, and the work done in each processarrow_forward0.5-kg of air undergoes a power cycle consisting of the following process: Process 1-2: Constant volume from p1 = 1.4 bar, T1 = 5 °C to T2 = 180 °C. Process 2-3: Adiabatic expansion to v3 = 1.4v2 Process 3-1: Constant-pressure compression Assuming ideal gas behavior, determine a) the pressure at State 2, in bar. b) the temperature at State 3, in °C. c) the thermal efficiency of the cycle.arrow_forward3) From an initial state where the pressure is p,, the temperature is T, and the volume is V1, water vapor contained in a piston-cylinder assembly undergoes each of the following processes: Process 1-2: Constant-temperature to p, = 2p, Process 1-3: Constant volume to p3 = 2p1 Process 1-4: Constant pressure to V4 = 2V1 Process 1-5: Constant temperature to V; = 2V, %3D On a p-V diagram, sketch each process, identify the work by an area on the diagram, and indicate whether the work is done by, or on, the water vapor.arrow_forward
- = 95°F and m3 = 1.5 lb/s. Refrigerant 134a The figure belows shows three components of an air-conditioning system, where T3 flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady- state operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic and potential energy effects are negligible. Air Tj = 535°R C,= 0.240 Btu/I6•°R Saturated liquid R-134a T3, ṁ3 Fan Wey = -0.2 hp Throttling valve 4 Saturated vapor P5=P4 P4 = 60 lbf/in.2 T = 528°R -Heat exchanger Modeling air as an ideal gas with constant c, = 0.240 Btu/lb· °R, determine the mass flow rate of the air, in Ib/s. i Ib/sarrow_forwardInitially contains Air: P1 = 30 lbf/in^2 T1 = 540 °F V1 = 4 ft^3 Second phase of process involving Air to a final state: P2 = 20 lbf/in^2 V2 = 4.5 ft^3 Wheel transfers energy TO the air by WORK at 1 Btu. Energy transfers TO the air by HEAT at 12 Btu. Ideal Gas Behavior. Wpw =-1 Btu Ima Determine whether the propeller's work is done BY the system or On the system. Q = -12 Btu Air Wpist = ? Initially, p₁ = 30 lbf/in.², T₁ = 540°F, V₁ = 4 ft³. Finally, p2 = 20 lbf/in.², V₂ = 4.5 ft³.arrow_forwardA gas contained within a piston-cylinder assembly undergoes three processes in series: Process 1-2: Constant volume from p₁ = 1 bar, V₁ = 4 m³ to state 2, where p2 = 2 bar. Process 2-3: Compression to V3 = 2 m³, during which the pressure-volume relationship is pV = constant. Process 3-4: Constant pressure to state 4, where V4 = 1 m³. Sketch the processes in series p-V coordinates and evaluate the work for each process, in kJ. Hint: Draw all the processes neatly on P-V diagram. Denote the states 1-4. Do not forget to add arrows.arrow_forward
- Initially contains Air: P1 = 30 lbf/in^2 T1 = 540 °F V1 = 4 ft^3 Second phase of process involving Air to a final state: P2 = 20 lbf/in^2 V2 = 4.5 ft^3 Wheel transfers energy TO the air by WORK at 1 Btu. Energy transfers TO the air by HEAT at 12 Btu. Ideal Gas Behavior. Find T2 in Radians. Wpw =-1 Btu Ima Q = -12 Btu Air Wpist = ? Initially, p₁ = 30 lbf/in.², T₁ = 540°F, V₁ = 4 ft³. Finally, p2 = 20 lbf/in.², V₂ = 4.5 ft³.arrow_forward4) Figure shows a gas contained in a vertical piston-cylinder assembly. The total mass of the piston (including shaft) is 100 kg. While the gas is slowly heated, the internal energy of the gas increases by 0.1 kJ, the potential energy of the piston-shaft combination increases by 0.2 kJ. The piston and cylinder are poor conductors, and friction between them is negligible. The local atmospheric pressure is 1 bar and approximate g as 10 m/s². The cross-sectional area of the piston is 0.01 m². Determine, (a) the work done by the gas, (b) the heat transfer to the gas, all in kJ. Patm = 1 bar Gas 0.01 m²arrow_forward* Your answer is incorrect. A piston-cylinder assembly contains 0.7 lb of propane. The propane expands from an initial state where p₁ = 60 lbf/in.² and T₁ = 70°F to a final state where p₂ = 10 lbf/in.² During the process, the pressure and specific volume are related by pv² = constant. Determine the energy transfer by work, in Btu. W = i 3.123 Btuarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics - Thermodynamics: (21 of 22) Change Of State: Process Summary; Author: Michel van Biezen;https://www.youtube.com/watch?v=AzmXVvxXN70;License: Standard Youtube License