FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.64P
To determine
Expression for thermal efficiency of the overall cycle (combined cycle).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure below shows a turbine-driven pump that provides water to a mixing chamber located dz = 5 m higher than the pump,
where in = 50 kg/s. Steady-state operating data for the turbine and pump are labeled on the figure. Heat transfer from the water to
its surroundings occurs at a rate of 2 kW. For the turbine, heat transfer with the surroundings and potential energy effects are
negligible. Kinetic energy effects at all numbered states can be ignored.
h2 = 417.69 kJ/kg
Mixing chamber
Ocy = 2 kW
Steam
P3 = 30 bar
T3 = 400°C
dz
Turbine
Pump
P4 = 5 bar
T4 = 180°C
Saturated liquid water
m, Pi = 1 bar
Determine:
(a) the magnitude of the pump power, in kW.
(b) the mass flow rate of steam, in kg/s, that flows through the turbine.
Q
A horizontal piston-cylinder assembly contains 2.00 kg of a fluid. The assembly is
fitted with both a heater and a paddle wheel. It is found that the fluid undergoes an
expansion from state 1 to state 2. During the process, the paddle wheel transmits
16.4 kJ of mechanical energy (Wp.w.) to the fluid via mixing, and the heater
supplies 83 kJ of thermal energy (Q) to the fluid. The specific internal energy
changes from U1 = 2386.6 kJ/kg to U2 = 2409.1 kJ/kg during the process.
Determine the work done by the steam on the piston during the process (Wpiston)
(kJ).
Your Answer:
45°F
hp
Insert
*
24
%
8.
4
R
H
J
K
D
F
CV
B N
M
1. In
system, no mass can cross its boundary. However, it only allows energy
transfer across its boundary
o Control system
o Closed system
o Isolated system
2. Heat transferred to a system and work done by a system are always positive.
o True
o False
3.
——
is a device that decreases the velocity of a fluid by increasing its pressure.
o Nozzle
o Diffuser
o Compressor
o Turbine
4. A heat engine may not reject any heat to a low-temperature reservoir and still
can complete a cycle.
o True
o False
5. Heat is removed from the compartment of a refrigerator at a rate of 250 kJ/min. The
refrigerator consumes 0.8 kW, determine the COP of the refrigerator.
6. It has been proved experimentally by joule that the internal energy is a function of
o Temperature only
o Pressure only
o Volume only
o All together
7. The combination of flow energy and internal energy gives -
8. A process during which there is no heat transfer
o Adiabatic
o Isentropic
o Polytropic
o Isothermal
9. Heat is transferred to a…
Chapter 2 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As shown in figure below, 5 kg of steam contained within a piston-cylinder assembly undergoes an expansion from state 1, where the specific internal energy is uj = 2709.9 kJ/kg, to state 2, where uz = 2659.6 kJ/kg. During the process, there is heat transfer to the steam with a magnitude of 80 kJ. Also, a paddle wheel transfers energy to the steam by work in the amount of 18.5 kJ. There is no significant change in the kinetic or potential energy of the steam. Determine the energy transfer by work from the steam to the piston during the process, in kJ. 5 kg of steamarrow_forwardFive kg of steam is contained within a piston- cylinder assembly. It undergoes an expansion from state 1, where the specific internal energy is u_1=2709.9 kJ/kg to state 2, where u_2=2659.6 kJ/kg. During the process, heat is transferred to the steam with a magnitude of 80 kJ. Also, a paddle Ww=-18.5 kJ wheel transfers energy to the steam by work in the amount of 18.5 kJ. There is no significant change in the kinetic or potential energy of the steam. Determine the energy transfer by work from the steam to the piston during the process, in kJ. Indicate whether the work is done on or done by the system. Q=+80 kJ 5 kg of steam W u₁ = 2709.9 kJ/kg U₂ = 2659.6 kJ/kg piston =?arrow_forwardThermodynamics 1 Pls answer asap thankyouarrow_forward
- Intensive property of a system is one whose value depends on the mass of the system, like volume does not depend on the mass of the system, like temperature, is dependent on the path followed and not on the state remains constant O The refrigeration cycle involves four main components a compressor, a condenser, an expansion valve, and evaporator working fluid (refrigerant), a compressor, a condenser, and evaporator a pump, a condenser, an expansion valve, and evaporatorarrow_forward3.5 thermodynamicsarrow_forwardThe figure shows two power cycles, A and B, operating in series, with the energy transfer by heat into cycle B equal in magnitude to the energy transfer by heat from cycle A. All energy transfers are positive in the directions of the arrows. Determine an expression for the thermal efficiency of an overall cycle consisting of cycles A and B together in terms of their individual thermal efficiencies. WA WB (a) A and B in series 2₁ Q3 WA + WB (b) Overall cyclearrow_forward
- Refrigerators to preserve perishable foods have long been one of the essential appliances in a household. The refrigeration system of the household refrigerator is basically based on the vapor-compression refrigeration cycle, as shown in Figure Q2.1. Among the important components of the vapor-compressions refrigeration cycle are a throttling valve (A) and a compressor (B). In this refrigeration system, tetrafluoroethane (R-134a) is used as the refrigerant. Condenser W B A Evaporator Figure Q2.1: Basic components of a refrigeration system. (a) If the refrigerant enters A as a saturated liquid at 1100 kPa and leaves at 120 kPa, (i) Estimate the quality of the refrigerant at the exit of A. (ii) Calculate the temperature drop during the process. (iii)With appropriate assumptions, prove that the conservation of energy for A as follows the equation below, h= h2 (b) If the refrigerant enters B as a saturated vapor at 120 kPa with flow rate of 1.5 m³/min and leaves at 1100 kPa, (i) Calculate…arrow_forwardSolve for velocity in ft/s and the power required in hp. Step by step solution thank youarrow_forwardCarbon dioxide (CO2) contained within a piston cylinder undergoes three processes in series: = p1 10 bar, V₁ = 0.25 m³, to V₂ = 2.3 m³ during Process 12: Expansion from which the pressure-volume relationship is pV = constant Process 23: Constant volume heating from state 2 to state 3 where p3 = 10 bar Process 31: Constant pressure compression to the initial state. Sketch (don't have to use a computer) the process in series on a pV diagram (p on y-axis, V on x-asix) and evaluate the moving boundary work for each process.arrow_forward
- Thermo 12arrow_forward1.5 thermodynamicsarrow_forward1. A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes: Process 1-2: Compression with PV = constant, from P₁ = 1 bar, V₁ = 2 m³ to V₂ = 0.2 m³, U₂ − U₁ = 100 kJ; 2 Process 2-3: Constant volume to P3 = P₁; Process 3-1: Constant-pressure and adiabatic process. Neglect the changes of kinetic and potential energy in all three processes. (a) Sketch the cycle on a P-V diagram; (b) Determine the net work (i.e., W12 + W23 + W31) of the cycle, in kJ; (c) Determine the heat transfer for process 2-3, in kJ. Hint: System's state variables remain unchanged after a cycle, i.e. (U₂ − U₁) + (U3 − U₂) + (U₁ − U3) = 0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license