FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.71P
a.
To determine
Power input to the cycle.
b.
To determine
Cost of electricity
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A power cycle receives energy by heat transfer from the combustion of fuel and develops power at a net rate of 150 MW. The thermal efficiency of the cycle is 40%. a. Determine the net rate at which the cycle receives energy by heat transfer in MW b. For 8000 hours of operation annually, determine the net work output, in kW h per year. c. Evaluate the net work output at $0.08 per kW h, determine the value of net work in $ per year.
A heat pump cycle delivers energy by heat transfer to a dwelling at a rate of 40,000 Btu/h. The coefficient of performance of the cycle
is 3.
(a) Determine the power input to the cycle, in hp.
(b) Evaluating electricity at $0.085 per kW-h, determine the cost of electricity during the heating season when the heat pump
operates for 2000 hours.
W cycle
Cost =
$
hp
11. thermodynamics
Chapter 2 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.71 WP A heat pump cycle delivers energy by heat transfer to a dwelling at a rate of 11.7 kW. The coefficient of performance of the cycle is 2.8. a. Determine the power input to the cycle, in kW. b. Evaluating electricity at $0.10 per kWh, determine the cost of electricity during the heating season when the heat pump op- erates for 1800 hours.arrow_forwardA System executes a power cycle while recieving 750 kJ by heat transfer at a temperature of i500°k and discharging 100 k) by heat transfer at 500°K. Another heat transfer from the system occurs at 1000 °K. Determine the maximum possibe thermal efficiency Of the System using 5 Sigifigant figures.arrow_forwardpls answer completelyarrow_forward
- 1. A refrigerating system operates on the reversed Carnot Cycle. The higher temperature of the refrigerant in the system is 120°F and the lower is 10°F. The capacity is 20 tons. Neglect losses. Determine the network in Btu/min.arrow_forwardThermal efficiency of a power cycle is 0.8. For the cycle, Wnet = 250 kJ. Determine Qout in kJ. Enter the answer without units and without rounding.arrow_forwardb) A heat engine operates between two reservoirs at 800° C and 20° C. One-half of the work output of the engine is used to drive a Carnot heat pump that removes heat from the cold surroundings at 2° C and transfers heat to a house maintained at 22° C. If the house is losing heat at a rate of 62,000 kJ/h, determine the minimum rate of heat supply to the heat engine required to keep the house at 22° C.arrow_forward
- For a power cycle operating as shown in Fig. 5, the energy transfer by heat into the cycle, Qa, is 500 MJ. What is the network developed, in MJ, if the cycle themal efficiency is 30%? What is the value of Qaut, in MJ? Hot body System Cold body Qout 330 M Q130 M 40 Oout550 MI Qu40 Marrow_forward10. thermodynamicsarrow_forwardA heat pump is used to maintain the interior of a building at 21 °C. At steady state, the heat pump receives energy by heat transfer from well water at 9°C and discharges energy by heat transfer to the building at a rate of 120000 kJ/h. Over a period of 14 days, an electric meter records that 1490 kW-h of electricity is provided to the heat pump. 1. Draw a schematic diagram(s)arrow_forward
- Please consider an electric motor (the system) in steady operation in an environment with T = 24 •C. The motor draws 1 kW of electrical power and produces 1 hp of mechanical horse power. a. Please determine Q in Wat. b. Please determine Šc in Watt/ K. 1.arrow_forward2) A heat pump with the amount of heat of liquid refrigerant (mix) when it will enter the expansion of 480 Btu/lb. while the amount of heat from the refrigerant vapor after leaving the evaporator is 412 Btu/lb. What is the coefficient of performance (COP) if the heat amount of the superheated refrigerant after being compressed by the compressor has a value of 572 Btu/lb?arrow_forward1. Steam enters a turbine with an enthalpy of 1292 Btu/lb and leaves with a enthalpy of 1098 Btu/lb. the transferred heat is 13 Btu/lb. what is the work in Btu/min and in hp for a flow of 2 lb/sec? Hint:1 Btu/min = 42.4 hp. 2. A thermodynamic steady flow system receives 4.56 kg/min of a fluid where p1 %3D 137.90 kPa, Vị = 0.0388 7m Vi = 122, and u = 17.16. The fluid leaves the %3D kg' kg system at a boundary where p2 = 551.6 kPa, v2 = 0.193 kl = 183, and ug %3D v2 %3D kg' 52.80 during passage through the system the fluids receives 3,000 of heat. kg Determine the work. Hints: (a) you have a positive heat(Q), (b)your unit in your final answwer is min." 3. In a steady flow apparatus, 135 kJ of work is done by each kg of fluid. The specific volume of the fluid, pressure and speed at the inlet are 0.37 m3 600 kg' 77L kpa, and 16 - respectively. The inlet is 32 m above the floor, and the discharge pipe is at floor level. The discharge conditions are 0.62 , kg 100 kpa, and 270 kg kJ The total…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License