FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.17P
a.
To determine
The final volume.
b.
To determine
To determine the work for the process.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A piston-cylinder assembly contains 0.7 lb of propane.
The propane expands from an initial state where p₁ =
60 lbf/in.2 and T₁ = 50°F to a final state where p2 = 10
lbf/in. During the process, the pressure and specific
volume are related by pv² = constant.
Determine the energy transfer by work, in Btu.
Three-tenths kilogram of a gas is contained within a piston-cylinder assembly. The
gas undergoes a process for which the pressure-volume relationship is PVA1.6 =
constant. The initial pressure is 73 psi, the initial volume is 10 ft3, and the final volume
is 15 ft3. The change in specific internal energy of the gas in the process is 35 kJ/kg.
There are no significant changes in kinetic or potential energy. Determine the net
heat transfer for the process, in kJ.
Select one:
а. 11.66
b. -4.4
С. 40.8
d. 61.8
A closed system consisting of 10 lb of air undergoes a polytropic process from p₁ = 80 lbf/in². v₁ =4 ft3/lb to a final state where p2 = 20
lbf/in², v₂ = 11 ft³/lb.
Determine the polytropic exponent, n, and the amount of energy transfer by work, in Btu, for the process.
Determine the polytropic exponent, n, for the process.
n=
Chapter 2 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A gas in a piston-cylinder assembly undergoes a process for which the relationship between pressure and volume is pV2 = constant. The initial pressure is 9 bar, the initial volume is 2 m3, and the final pressure is 4 bar. Determine the final volume in m3.arrow_forwardA gas in a piston-cylinder assembly undergoes a compression process for which the relation between pressure and volume is given by pn = constant. The initial volume is 0.1 m, the final volume is 0.04 m3, and the final pressure is 2 bar. For n = 1.2, determine the initial pressure, in bar, and the work for the process, in kJ.arrow_forwardA gas in a piston-cylinder assembly undergoes a process for which the relationship between pressure and volume ispV" = constant. The initial pressure is 1 bar, the initial volume is 0.12 m³, and the final pressure is 9 bar. The value of the polytropic exponent is n = 1.2. Determine the final volume, in m³, and the work for the process, in kJ.arrow_forward
- A closed system consisting of 2 lb of a gas undergoes a process during which the relation between pressure and volume is pVn = constant. The process begins with p1 = 35 lbf/in2, V1 = 14 ft3 and ends with p2 = 100 lbf/in2. The value of n = 1.3.Determine the final volume, V2, in ft3, and determine the specific volume at states 1 and 2, in ft3/lb.arrow_forwardA gas within a piston-cylinder assembly undergoes a process from a state where P = 100 kPa, Vi = 0.09 m to a state where P2 = 250 kPa, V2 = 0.03 m. The relationship between pressure and volume during the process is linear. Pressure (KPa) State 2 State 1 Volume (m³) a) Determine the work for the process, in kJ. b) Determine the density of the vapor at the initial state (pi) if the mass of the system is equal to 0.3 kg. c) Did the gas undergo an expansion or a compression process? Interpret your answer. d) If this was a constant volume process, what would be the work done by the system?arrow_forwardA closed system consisting of 10 Ib of air undergoes a polytropic process from p1 = 80 Ibf/in?, v1 = 4 ft/lb to a final state where p2 = 20 Ibf/in?, v2 = 10 ft³/lb. Determine the polytropic exponent, n, and the amount of energy transfer by work, in Btu, for the process.arrow_forward
- A gas in a piston–cylinder assembly undergoes a compression process for which the relation between pressure and volume is given by pVn = constant. The initial volume is 0.2 m3, the final volume is 0.04 m3, and the final pressure is 2 bar.For n = 1.4, determine the initial pressure, in bar, and the work for the process, in kJ.arrow_forwardA closed system consisting of 2 lb of a gas undergoes a process during which the relation between pressure and volume is pVn = constant. The process begins with p1 = 15 lbf/in.2, ν1 = 1.25 ft3/lb and ends with p2 = 60 lbf/in.2, ν2 = 0.5 ft3/lb. Determine (a) the volume, in ft3, occupied by the gas at states 1 and 2 and (b) the value of n.arrow_forwardA gas in a piston–cylinder assembly undergoes a process for which the relationship between pressure and volume is pVn = constant. The initial pressure is 1 bar, the initial volume is 0.10 m3, and the final pressure is 9 bar. The value of the polytropic exponent is n = 1.5. Determine the final volume, in m3, and the work for the process, in kJ.arrow_forward
- A closed system consisting of 10 lb of air undergoes a polytropic process from p₁ = 70 lbf/in², v₁ = 4 ft³/lb to a final state where p2 = 20 lbf/in², v2 = 12 ft³/lb. Determine the polytropic exponent, n, and the amount of energy transfer by work, in Btu, for the process. Step 1 Determine the polytropic exponent, n, for the process. n = iarrow_forwardCurrent Attempt in Progress A closed system consisting of 10 lb of air undergoes a polytropic process from p₁ = 65 lbf/in², v₁ = 4 ft3/lb to a final state where p2 = 20 lbf/in², v₂ = 10 ft³/lb. Determine the polytropic exponent, n, and the amount of energy transfer by work, in Btu, for the process.arrow_forwardThree-tenths kilogram of a gas is contained within a piston-cylinder assembly. The gas undergoes a process for which the pressure-volume relationship is PV^1.6 = constant. The initial pressure is 73 psi, the initial volume is 10 ft3, and the final volume is 15 ft3. The change in specific internal energy of the gas in the process is 35 kJ/kg. There are no significant changes in kinetic or potential energy. Determine the net heat transfer for the process, in kJ.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license