FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.56P
To determine
Calculate the amount of heat that is transferred during the process obtained from points 1 to 2 and process 2-3 and the net work done for the cycle and type of cycle
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The following processes occur in a reversible
thermodynamic cycle:
1-2: 0.2 kg heating at constant pressure
1.05 bar at specific volume 0.1 m3/kg
and work done -515 J.
2-3: Isothermal compression to 4.2 bar.
3-4: Expansion according to law pv1./=
constant.
4-1: heating at constant volume back to
the initial conditions.
Using file 3, which figure number is
associated the process?
?
A gas within a piston–cylinder assembly undergoes a thermodynamic cycle consisting of three processes in series, beginning at state 1 where m = 0.5 kg, p1 = 1 bar, V1 = 1.5 m3, as follows:
Process 1–2: Compression with pV = constant, W12 = -102 kJ, u1 = 424 kJ/kg, u2 = 780 kJ/kg.
Process 2–3: W23 = 0, Q23 = -150 kJ.
Process 3–1: W31 = 48 kJ.
There are no changes in kinetic or potential energy.
Determine Q12 and Q31, each in kJ.
A gas within a piston–cylinder assembly undergoes a thermodynamic cycle consisting of three processes in series, beginning at state 1 where m = 0.5 kg, p1 = 1 bar, V1 = 1.5 m3, as follows:
Process 1–2: Compression with pV = constant, W12 = -102 kJ, u1 = 424 kJ/kg, u2 = 780 kJ/kg.
Process 2–3: W23 = 0, Q23 = -150 kJ.
Process 3–1: W31 = 48 kJ.
There are no changes in kinetic or potential energy.
Draw all processes schemes and a p-V diagrams
Chapter 2 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Similar questions
- A gas undergoes a cycle in a piston–cylinder assembly consisting of the following three processes:Process 1–2: Constant pressure, p = 1.4 bar, V1 = 0.028 m3, W12 = 10 kJProcess 2–3: Compression with pV = constant, U3 = U2Process 3–1: Constant volume, U1 - U3 = -20 kJThere are no significant changes in kinetic or potential energy.(a) Calculate the net work for the cycle, in kJ.(b) Calculate the heat transfer for process 1–2, in kJ.arrow_forwardA gas contained within a piston–cylinder assembly undergoes a thermodynamic cycle consisting of three processes:Process 1–2: Compression with pV = constant from p1 = 1 bar, V1 = 1.0 m³ to V2 = 0.2 m³Process 2–3: Constant-pressure expansion to V3 = 1.0 m³Process 3–1: Constant volumeSketch the cycle on a p–V diagram labeled with pressure and volume values at each numbered state.arrow_forwardA non-ideal gas contained within a piston-cylinder assembly undergoes two processes, A andB, between the same end states, 1 and 2, where p1 = 10 bar, V1 = 0.1 m3, U1 = 400 kJ and p2 =1 bar, V2 = 1.0 m3, U2 = 200 kJ:• Process A: Process from 1 to 2 during which the pressure-volume relation is pV = constant.• Process B: Constant-volume process from state 1 to a pressure of 2 bar, followed by alinear pressure-volume process to state 2.For each of the processes A and B:a) Sketch the process on a p-V diagram.arrow_forward
- 1. 2 kg of air undergoes a power cycle undergoes a power cycle consisting of the following processes: Process 1-2: Constant-temperature expansion from p1 = 2 m3/kg. Process 2-3: Constant-pressure compression to T3 = 696.9 K. Process 3-1: Constant-volume heating to state 1. 4 bar, v, = 1 m³ /kg, to p2 = 2 bar, v2 = Assume ideal gas behavior and neglect kinetic and potential energy effects. Show that T2= 1393.7 K and find T1. Sketch the cycle on a T-v diagram and label the states. Find the work done and heat transferred during each process to complete this chart: s а. b. с. Process W (kJ) Q (kJ) 1-2 2-3 3-1 ТОTAL Find the thermal efficiency of the cycle. For an energy balance on the entire cycle (1-2-3-1), what should the change in system d. е. energy be? Does that hold in this case?arrow_forward3. Ideal air (mass =lkg) in a piston-cylinder assembly undergoes two reversible processes in series from state 1, where T;=290K and Pi= 1bar. The gas constant is 8.314 (kJ/kmol.K). Process 1-2: compression to P3=5 bar in a polytropic process with n=1.19 Process 2-3: expansion in an adiabatic process to P3=1bar Determine the temperature at state 2 and 3 in (K) The total work and heat transfer. Plot on TS diagram.arrow_forwardThe following processes occur in a reversible thermodynamic cycle: 1-2: 0.2 kg heating at constant pressure 1.05 bar at specific volume 0.1 m3/kg and work done -515 J. 2-3: Isothermal compression to 4.2 bar. 3-4: Expansion according to law pv1./= constant. 4-1: heating at constant volume back to the initial conditions. Calculate the work done for the isothermal process in J.arrow_forward
- = 95°F and m3 = 1.5 lb/s. Refrigerant 134a The figure belows shows three components of an air-conditioning system, where T3 flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady- state operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic and potential energy effects are negligible. Air Tj = 535°R C,= 0.240 Btu/I6•°R Saturated liquid R-134a T3, ṁ3 Fan Wey = -0.2 hp Throttling valve 4 Saturated vapor P5=P4 P4 = 60 lbf/in.2 T = 528°R -Heat exchanger Modeling air as an ideal gas with constant c, = 0.240 Btu/lb· °R, determine the mass flow rate of the air, in Ib/s. i Ib/sarrow_forwardWhen U=f(T,v) for an ideal gas if B=1.4 E -5 /K, and if partial derivative of internal energy with respect to volume at constant temperature 6.16 J/m3 with V=5 m3 then the pressure * :is 7.221 E 4 Pa 3.14 E 5 Pa 1.161 E 5 Pa 6.73 E 6 Pa In Otto cycle if T1=50 C, T2=70 C, * :V1=7.5 m3, y=1.5, then V3 is equal to 7.08 m^3 3.11 m^3 6.65 m^3 18.23 m^3arrow_forwardThe following processes occur in a reversible thermodynamic cycle: 1-2: 0.2 kg heating at constant pressure 1.05 bar at specific volume 0.1 m³/kg and work done -515 J. 2-3: Isothermal compression to 4.2 bar. 3-4: Expansion according to law pv1./= constant. 4-1: heating at constant volume back to the initial conditions. Calculate the work done for the expansion process in joules to 2 decimal places ?arrow_forward
- A system consisting of a gas contained in a cylinder with a frictionless piston is taken around the closed path a→b→c→a where the process c→a is isothermal. During the closed cycle, the system expels 150 J to the environment. If the work done on the system during the isobaric leg b→c of the cycle is 250 J, what is the heat expelled/absorbed by the gas in the isothermal leg c→a in J.arrow_forwardInitially contains Air: P1 = 30 lbf/in^2 T1 = 540 °F V1 = 4 ft^3 Second phase of process involving Air to a final state: P2 = 20 lbf/in^2 V2 = 4.5 ft^3 Wheel transfers energy TO the air by WORK at 1 Btu. Energy transfers TO the air by HEAT at 12 Btu. Ideal Gas Behavior. Wpw =-1 Btu Ima Determine whether the piston's work is done ON the system or BY the system. Q = -12 Btu Air Wpist = ? Initially, p₁ = 30 lbf/in.², T₁ = 540°F, V₁ = 4 ft³. Finally, p2 = 20 lbf/in.², V₂ = 4.5 ft³.arrow_forwardAn ideal gas,Cp=5/2 R and Cv=3/2 R, is changed from P1=1 bar and V1=12m^3 to P2=12 bar and V2=1m^3 by the following mechanically reversible process. a)Isothermal compression b)Adiabatic compression followed by cooling at constant pressure c)Adiabatic compression followed by cooling at constant volume. Calculate Q,W,U and H in each case and find the total Q,W,H and U . Answers should be in kJ. SOLVE STEP BY STEP PLEASEarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY