CHEM PRINCIPLES LL W/ACHIEVE ONE-SEM
7th Edition
ISBN: 9781319420994
Author: ATKINS
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.37E
Interpretation Introduction
Interpretation:
The presence of a nodal plane halfway between the two nuclei has to be confirmed.
Concept Introduction:
The nodal plane is the region around the nuclei that has zero electron density; thus the probability that any electron can be found within this nodal plane region is zero.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
although we associate
Pz
2. Now we will move on to diatomic molecules. In atoms all p-orbitals are equivalent
with m/= 0, and px py with m/= ±1. In diatomic
molecules these orbitals are in fact separated, with pz associated with o orbitals
along the internuclear axis and px py associated with л orbitals (m/= ±1). In
determining electron configurations we do indeed separate them: N₂ (KK¹ 0₂²).
and O2 (KKogu ng *2).
4
a. Two excited states of N₂ are associated with Tu
transitions.
Tg and
og
→ ou*
i.
Draw the MO energy level scheme (p-orbitals only) for the N₂
ground state and for these two excited states.
ii.
Obtain the term symbols for the two excited states and order
them according to Hund's rules.
iii. Write the wave functions for each of the terms obtained in ii)
above.
iv. Pick one wave function from each excited state and show it
obeys the Pauli Principle.
Consider an electron in the spin-state σ =
[+
[α + ẞ].
(a) Is σ an eigenfunction of Ŝ²? If yes, what is the eigenvalue and what is the corresponding
spin magnitude? If no, what is the expectation value?
(b) Is σ an eigenfunction of S.? If yes, what is the eigenvalue? If no, what is the expectation
value?
Give the ground-state electron configurations of (i) XeF, (ii) PN, and (iii) SO−.
Chapter 2 Solutions
CHEM PRINCIPLES LL W/ACHIEVE ONE-SEM
Ch. 2 - Prob. 2A.1ASTCh. 2 - Prob. 2A.1BSTCh. 2 - Prob. 2A.2ASTCh. 2 - Prob. 2A.2BSTCh. 2 - Prob. 2A.3ASTCh. 2 - Prob. 2A.3BSTCh. 2 - Prob. 2A.4ASTCh. 2 - Prob. 2A.4BSTCh. 2 - Prob. 2A.1ECh. 2 - Prob. 2A.2E
Ch. 2 - Prob. 2A.3ECh. 2 - Prob. 2A.4ECh. 2 - Prob. 2A.5ECh. 2 - Prob. 2A.6ECh. 2 - Prob. 2A.7ECh. 2 - Prob. 2A.8ECh. 2 - Prob. 2A.9ECh. 2 - Prob. 2A.10ECh. 2 - Prob. 2A.11ECh. 2 - Prob. 2A.12ECh. 2 - Prob. 2A.13ECh. 2 - Prob. 2A.14ECh. 2 - Prob. 2A.15ECh. 2 - Prob. 2A.16ECh. 2 - Prob. 2A.17ECh. 2 - Prob. 2A.18ECh. 2 - Prob. 2A.19ECh. 2 - Prob. 2A.20ECh. 2 - Prob. 2A.21ECh. 2 - Prob. 2A.22ECh. 2 - Prob. 2A.23ECh. 2 - Prob. 2A.24ECh. 2 - Prob. 2A.25ECh. 2 - Prob. 2A.26ECh. 2 - Prob. 2A.27ECh. 2 - Prob. 2A.28ECh. 2 - Prob. 2A.29ECh. 2 - Prob. 2A.30ECh. 2 - Prob. 2B.1ASTCh. 2 - Prob. 2B.1BSTCh. 2 - Prob. 2B.2ASTCh. 2 - Prob. 2B.2BSTCh. 2 - Prob. 2B.3ASTCh. 2 - Prob. 2B.3BSTCh. 2 - Prob. 2B.4ASTCh. 2 - Prob. 2B.4BSTCh. 2 - Prob. 2B.5ASTCh. 2 - Prob. 2B.5BSTCh. 2 - Prob. 2B.1ECh. 2 - Prob. 2B.2ECh. 2 - Prob. 2B.3ECh. 2 - Prob. 2B.4ECh. 2 - Prob. 2B.5ECh. 2 - Prob. 2B.6ECh. 2 - Prob. 2B.7ECh. 2 - Prob. 2B.8ECh. 2 - Prob. 2B.9ECh. 2 - Prob. 2B.10ECh. 2 - Prob. 2B.11ECh. 2 - Prob. 2B.12ECh. 2 - Prob. 2B.13ECh. 2 - Prob. 2B.14ECh. 2 - Prob. 2B.15ECh. 2 - Prob. 2B.16ECh. 2 - Prob. 2B.17ECh. 2 - Prob. 2B.18ECh. 2 - Prob. 2B.19ECh. 2 - Prob. 2B.20ECh. 2 - Prob. 2B.21ECh. 2 - Prob. 2B.22ECh. 2 - Prob. 2B.23ECh. 2 - Prob. 2B.24ECh. 2 - Prob. 2C.1ASTCh. 2 - Prob. 2C.1BSTCh. 2 - Prob. 2C.2ASTCh. 2 - Prob. 2C.2BSTCh. 2 - Prob. 2C.3ASTCh. 2 - Prob. 2C.3BSTCh. 2 - Prob. 2C.1ECh. 2 - Prob. 2C.2ECh. 2 - Prob. 2C.3ECh. 2 - Prob. 2C.4ECh. 2 - Prob. 2C.5ECh. 2 - Prob. 2C.6ECh. 2 - Prob. 2C.7ECh. 2 - Prob. 2C.8ECh. 2 - Prob. 2C.9ECh. 2 - Prob. 2C.10ECh. 2 - Prob. 2C.11ECh. 2 - Prob. 2C.12ECh. 2 - Prob. 2C.13ECh. 2 - Prob. 2C.14ECh. 2 - Prob. 2C.15ECh. 2 - Prob. 2C.16ECh. 2 - Prob. 2C.17ECh. 2 - Prob. 2C.18ECh. 2 - Prob. 2D.1ASTCh. 2 - Prob. 2D.1BSTCh. 2 - Prob. 2D.2ASTCh. 2 - Prob. 2D.2BSTCh. 2 - Prob. 2D.1ECh. 2 - Prob. 2D.2ECh. 2 - Prob. 2D.3ECh. 2 - Prob. 2D.4ECh. 2 - Prob. 2D.5ECh. 2 - Prob. 2D.6ECh. 2 - Prob. 2D.7ECh. 2 - Prob. 2D.8ECh. 2 - Prob. 2D.9ECh. 2 - Prob. 2D.10ECh. 2 - Prob. 2D.11ECh. 2 - Prob. 2D.12ECh. 2 - Prob. 2D.13ECh. 2 - Prob. 2D.14ECh. 2 - Prob. 2D.15ECh. 2 - Prob. 2D.16ECh. 2 - Prob. 2D.17ECh. 2 - Prob. 2D.18ECh. 2 - Prob. 2D.19ECh. 2 - Prob. 2D.20ECh. 2 - Prob. 2E.1ASTCh. 2 - Prob. 2E.1BSTCh. 2 - Prob. 2E.2ASTCh. 2 - Prob. 2E.2BSTCh. 2 - Prob. 2E.3ASTCh. 2 - Prob. 2E.3BSTCh. 2 - Prob. 2E.4ASTCh. 2 - Prob. 2E.4BSTCh. 2 - Prob. 2E.5ASTCh. 2 - Prob. 2E.5BSTCh. 2 - Prob. 2E.1ECh. 2 - Prob. 2E.2ECh. 2 - Prob. 2E.3ECh. 2 - Prob. 2E.4ECh. 2 - Prob. 2E.5ECh. 2 - Prob. 2E.6ECh. 2 - Prob. 2E.7ECh. 2 - Prob. 2E.8ECh. 2 - Prob. 2E.9ECh. 2 - Prob. 2E.10ECh. 2 - Prob. 2E.11ECh. 2 - Prob. 2E.12ECh. 2 - Prob. 2E.13ECh. 2 - Prob. 2E.14ECh. 2 - Prob. 2E.15ECh. 2 - Prob. 2E.16ECh. 2 - Prob. 2E.17ECh. 2 - Prob. 2E.18ECh. 2 - Prob. 2E.19ECh. 2 - Prob. 2E.20ECh. 2 - Prob. 2E.21ECh. 2 - Prob. 2E.22ECh. 2 - Prob. 2E.23ECh. 2 - Prob. 2E.24ECh. 2 - Prob. 2E.25ECh. 2 - Prob. 2E.26ECh. 2 - Prob. 2E.27ECh. 2 - Prob. 2E.28ECh. 2 - Prob. 2E.29ECh. 2 - Prob. 2E.30ECh. 2 - Prob. 2F.1ASTCh. 2 - Prob. 2F.1BSTCh. 2 - Prob. 2F.2ASTCh. 2 - Prob. 2F.2BSTCh. 2 - Prob. 2F.3ASTCh. 2 - Prob. 2F.3BSTCh. 2 - Prob. 2F.4ASTCh. 2 - Prob. 2F.4BSTCh. 2 - Prob. 2F.1ECh. 2 - Prob. 2F.2ECh. 2 - Prob. 2F.3ECh. 2 - Prob. 2F.4ECh. 2 - Prob. 2F.5ECh. 2 - Prob. 2F.6ECh. 2 - Prob. 2F.7ECh. 2 - Prob. 2F.8ECh. 2 - Prob. 2F.9ECh. 2 - Prob. 2F.10ECh. 2 - Prob. 2F.11ECh. 2 - Prob. 2F.12ECh. 2 - Prob. 2F.13ECh. 2 - Prob. 2F.14ECh. 2 - Prob. 2F.15ECh. 2 - Prob. 2F.16ECh. 2 - Prob. 2F.17ECh. 2 - Prob. 2F.18ECh. 2 - Prob. 2F.19ECh. 2 - Prob. 2F.20ECh. 2 - Prob. 2F.21ECh. 2 - Prob. 2G.1ASTCh. 2 - Prob. 2G.1BSTCh. 2 - Prob. 2G.2ASTCh. 2 - Prob. 2G.2BSTCh. 2 - Prob. 2G.1ECh. 2 - Prob. 2G.2ECh. 2 - Prob. 2G.3ECh. 2 - Prob. 2G.4ECh. 2 - Prob. 2G.5ECh. 2 - Prob. 2G.6ECh. 2 - Prob. 2G.7ECh. 2 - Prob. 2G.8ECh. 2 - Prob. 2G.9ECh. 2 - Prob. 2G.11ECh. 2 - Prob. 2G.12ECh. 2 - Prob. 2G.13ECh. 2 - Prob. 2G.14ECh. 2 - Prob. 2G.15ECh. 2 - Prob. 2G.16ECh. 2 - Prob. 2G.17ECh. 2 - Prob. 2G.18ECh. 2 - Prob. 2G.19ECh. 2 - Prob. 2G.20ECh. 2 - Prob. 2G.21ECh. 2 - Prob. 2G.22ECh. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10ECh. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.19ECh. 2 - Prob. 2.22ECh. 2 - Prob. 2.23ECh. 2 - Prob. 2.24ECh. 2 - Prob. 2.25ECh. 2 - Prob. 2.26ECh. 2 - Prob. 2.27ECh. 2 - Prob. 2.28ECh. 2 - Prob. 2.29ECh. 2 - Prob. 2.30ECh. 2 - Prob. 2.31ECh. 2 - Prob. 2.32ECh. 2 - Prob. 2.33ECh. 2 - Prob. 2.34ECh. 2 - Prob. 2.35ECh. 2 - Prob. 2.36ECh. 2 - Prob. 2.37ECh. 2 - Prob. 2.39ECh. 2 - Prob. 2.40ECh. 2 - Prob. 2.41ECh. 2 - Prob. 2.42ECh. 2 - Prob. 2.43ECh. 2 - Prob. 2.44ECh. 2 - Prob. 2.45ECh. 2 - Prob. 2.46ECh. 2 - Prob. 2.47ECh. 2 - Prob. 2.48ECh. 2 - Prob. 2.49ECh. 2 - Prob. 2.50ECh. 2 - Prob. 2.51ECh. 2 - Prob. 2.52ECh. 2 - Prob. 2.53ECh. 2 - Prob. 2.54ECh. 2 - Prob. 2.55ECh. 2 - Prob. 2.56ECh. 2 - Prob. 2.57ECh. 2 - Prob. 2.58ECh. 2 - Prob. 2.59ECh. 2 - Prob. 2.60ECh. 2 - Prob. 2.61ECh. 2 - Prob. 2.62ECh. 2 - Prob. 2.63ECh. 2 - Prob. 2.64E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 3. Sketch xy-plane cross-section diagrams for the orbitals listed below. Indicate nodal planes and spheres by dashed lines, and regions of high electron probability by shading. Show the x and y axes. Indicate the positive and the negative parts of the wave function with plus and minus signs. (a) 4px; (b) 3s; (c) 4dxy; (d) 3d,2-2; and (e) 4s.arrow_forwardIdentify the ground term from each set of terms: (a) ¹p, ³p,³F,¹G; (b) ³P,5D,³H,¹1,¹G; (c) 6S,4P,4G,²1.arrow_forwardThe ground state of NO2 is A1 in the group C2v. To what excited states may it be excited by electric dipole transitions, and what polarization of light is it necessary to use?arrow_forward
- 3- Consider the atom having the electron configuration 1s 2s2 2p 3s 3p. Assume that the z components of both the orbital and spin angular momenta of the electron in the 3p subshell are positive. What are the quantum numbers that describe the state of this electron? On=3,1= 1, m = 1, s = 1/2 n = 3,1 = 2, m = 1, s = 1/2 On= 3,1= 2, m 2, s =-1/2 On=3,13D 1, m = 2, s = 1/2 On=3,1 1, m = -1, s = 1/2 %3Darrow_forwardWrite out the ground-state electron configurations of Ti3+.arrow_forwardGive the term symbol(s) correspond to the ground state configuration of a Y2+ ion.arrow_forward
- Determine the value of the orbital, L, spin, S, total angular momentum J and g, for the ions Pr³+ and Yb³+.arrow_forwardCalculate the energy levels for J = 5, 6, 7, 8, and 9 for a 12C¹6 O molecule that has a bond length of 112.8 pm if it rotates freely in three dimensions. The isotopic mass of ¹2C atom is 12.0000 amu and the isotopic mass of ¹60 atom is 15.9949 amu. Express your answers in joules to three significant figures separated by commas. E = V— ΑΣΦ ? Jarrow_forwardWhat is the difference between functional magnetic resonance, electron paramagnetic resonance and nuclear paramagnetic resonance?arrow_forward
- What is the answerarrow_forwardCalculate the average kinetic energy, in units of EH, of an electron in the 3p AO of a one- electron species with 1 protons.arrow_forwardWhen β-carotene is oxidized in vivo, it breaks in half and forms two molecules of retinal (vitamin A), which is a precursor to the pigment in the retina responsible for vision. The conjugated system of retinal consists of 11 C atoms and 1 O atom. In the ground state of retinal, each level up to n = 6 is occupied by two electrons. Assuming an average internuclear distance of 140 pm, calculate (a) the separation in energy between the ground and first exciteted state in which one electron occupies the state with n = 7, and (b) the frequency of radiation required to produce a transition between these two states. From your results, correct the following sentence (from the options in brackets). The absorption spectrum of a linear polyene shifts to (higher/lower) frequency as the number of conjugated atoms (increases/decreases).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Group Theory - Learn like Expert with 3D animation | Introduction for Beginners | ONE Chemistry; Author: One Chemistry;https://www.youtube.com/watch?v=Lz2ih8fkgDs;License: Standard YouTube License, CC-BY