Concept explainers
Interpretation:
The reason behind greater value of lattice energy of silver bromide than that of silver iodide has to be explained.
Concept Introduction:
Three-dimensional array of ions constitute the ionic compound lattice. They are stabilized because of attractive forces between oppositely charged ions that lower the potential energy.
Stability of ionic compound depends upon two factors and that is size and charge. Higher the charge and less will be the stability of ionic compound and vice-versa. Smaller the size of anion more will be the stability
Lower is the potential energy of interaction and more stable is the ionic solid. Hence the compounds that have high charge density on small space are most stable ionic solids. For example, calcium phosphate is made up of
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
CHEM PRINCIPLES LL W/ACHIEVE ONE-SEM
- Explain the decomposition of nitroglycerin in terms of relative bond enthalpies.arrow_forwardBond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forwardUsing the standard enthalpy of formation data in Appendix G, calculate the bond energy of the carbon-sulfur double bond in CS2.arrow_forward
- Although nitrogen trifluoride (NF3) is a thermally stable compound, nitrogen triiodide (Nl3) is known to be a highly explosive material. NI3 can be synthesized according to the equation BN(s)+3IF(g)BF3(g)+NI3(g) a. What is the enthalpy of formation for NI3(s) given the enthalpy of reaction ( 307 kJ) and the enthalpies of formation for BN(s) (254 kJ/mol), IF(g) ( 96 kJ/mol), and BF3(g) ( 1136 kJ/mol)? b. It is reported that when the synthesis of NI3 is conducted using 4 moles of IF for every l mole of BN. one of the by-products isolated is [IF2]+ [BF4]. What are the molecular geometries of the species in this by-product? What are the hybridizations of the central atoms in each species in the by-product?arrow_forwardUsing the standard enthalpy of formation data in Appendix G, determine which bond is stronger: the SF bond in SF4(g) or in SF6(g)?arrow_forwardhat is the enthalpy change for a process? Is enthalpy a state function? In what experimental apparatus are enthalpy changes measured?arrow_forward
- Although nitrogen trifluoride (NF3) is a thermally stable compound, nitrogen triiodide (NI3) is known to be a highly explosive material. NI3 can be synthesized according to the equation BN(s) + 3IF(g) BF3(g) + NI3(g) a. What is the enthalpy of formation for NI3(s) given the enthalpy of reaction (307 kJ) and the enthalpies of formation for BN(s) (254 kJ/mol), IF(g) (96 kJ/mol), and BF3(g) (1136 kJ/mol)? b. It is reported that when the synthesis of NI3 is conducted using 4 moles of IF for every 1 mole of BN, one of the by-products isolated is [IF2]+[BF4]. What are the molecular geometries of the species in this by-product? What are the hybridizations of the central atoms in each species in the by-product?arrow_forwardWrite all resonance structures of chlorobenzene, C6H5Cl, a molecule with the same cyclic structure as benzene. In all structures, keep the CCl bond as a single bond. Which resonance structures are the most important?arrow_forwardGiven the following thermodynamic data, calculate the lattice energy of LiCl:ΔH°f[LiCl(s)] = -409 kJ/molΔH°sublimation [Li] = 161 kJ/molBond energy [Cl-Cl] = 243 kJ/molIE1 (Li) = 520 kJ/molEA1 (Cl) = -349 kJ/mol -1682 kJ/mol -984 kJ/mol -1560 kJ/mol -862 kJ/mol -1213 kJ/molarrow_forward
- Determine the crystal lattice energy for MgCl2, given the following information: Cl2(g) → Mgčl2(s)AH°f = -642 kJ/mol 2+ (Mg - AHvaporization = 147.7 kJ/mol, Mg- Ejionization = 2188.4 kl/mol, Cl2 - EBond = 248 kJ/mol, Cl" - Ejonization = -349 kJ/mol)arrow_forwardHow can I use the Born Haber cycle to establish the lattice energy of CsCl (s)from the following data: ΔHf° [CsCl(s)] = -442.8 kJ/mol; enthalpy of sublimation of Cesium is 78.2 kJ/mol; enthalpy of dissociation of Cl2 (g) = 243 kJ/mol Cl2 ; IE1 for Cs(g) = 375.7 kJ/mol; electron affinity enthalpy-EA1 for Cl(g) = -349kJ/mol.arrow_forwardWith reference to the “Chemistry Put to Work” box on explosives, (a) use bond enthalpies to estimate the enthalpy change for the explosion of 1.00 g of nitroglycerin. (b) Write a balanced equation for the decomposition of TNT. Assume that, upon explosion, TNT decomposes into N2(g), CO2(g), H2O(g), and C(s).arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning