Concept explainers
Interpretation:
Out of the compounds
Concept Introduction:
In any polar covalent bond, the difference in electronegativities gives rise to partial positive and negative charges respectively on the cation and anions.
The covalent character is determined with respect to the relative extent of distortion of the anionic cloud of the anion. For instance, highly charged small alkali metal cation such as
The covalent or ionic character of a polar covalent bond is determined on the basis of difference in electronegativities. If the difference exceeds 2, the compound is regarded as predominantly ionic. If it is much than 2 it is regarded as covalent in nature.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
CHEM PRINCIPLES LL W/ACHIEVE ONE-SEM
- Draw the Lewis structure for (a) NO+ ion, (b) C2H4.arrow_forwardCyanogen (CN)2 is known as pseodohalogen because it has some properties like halogens. It is composed of two CN’s joined together.(i) Draw the Lewis structure for all the possible combination for (CN)2.(ii) Calculate the formal charge and determine which one of the structures that you have drawn is most stable.(iii) For the stable structure, determine the geometry around the two central atoms.(iv) For the stable structure, draw the dipole arrows for the bonds.(v) Base on the stable structure, determine the polarity of molecule and state your reason.arrow_forwardAcetylene (C2H2) and nitrogen (N2) both contain a triplebond, but they differ greatly in their chemical properties.(a) Write the Lewis structures for the two substances. (b) By referring to Appendix C, look up the enthalpies of formationof acetylene and nitrogen. Which compound is more stable?(c) Write balanced chemical equations for the completeoxidation of N2 to form N2O5(g) and of acetylene to formCO2(g) and H2O(g). (d) Calculate the enthalpy of oxidationper mole for N2 and for C2H2 (the enthalpy of formationof N2O5(g) is 11.30 kJ/mol). (e) Both N2 and C2H2 possesstriple bonds with quite high bond enthalpies (Table 8.3).Calculate the enthalpy of hydrogenation per mole for bothcompounds: acetylene plus H2 to make methane, CH4;nitrogen plus H2 to make ammonia, NH3.arrow_forward
- Acetylene 1C2H22 and nitrogen 1N22 both contain a triplebond, but they differ greatly in their chemical properties.(a) Write the Lewis structures for the two substances. (b) Byreferring to Appendix C, look up the enthalpies of formationof acetylene and nitrogen. Which compound is more stable?(c) Write balanced chemical equations for the completeoxidation of N2 to form N2O51g2 and of acetylene to formCO21g2 and H2O1g2. (d) Calculate the enthalpy of oxidationper mole for N2 and for C2H2 (the enthalpy of formationof N2O51g2 is 11.30 kJ>mol). (e) Both N2 and C2H2 possesstriple bonds with quite high bond enthalpies (Table 8.3).Calculate the enthalpy of hydrogenation per mole for bothcompounds: acetylene plus H2 to make methane, CH4;nitrogen plus H2 to make ammonia, NH3.arrow_forwardWith reference to the “Chemistry Put to Work” box on explosives, (a) use bond enthalpies to estimate the enthalpy change for the explosion of 1.00 g of nitroglycerin. (b) Write a balanced equation for the decomposition of TNT. Assume that, upon explosion, TNT decomposes into N2(g), CO2(g), H2O(g), and C(s).arrow_forwardKeeping in mind that some elements violate the octet rule, draw a Lewis structure for each compound: (a) BeH 2; (b) PCl 5.arrow_forward
- Chemical species are said to be isoelectronic if they have the same Lewis structure (regardless of charge). Consider these ions and write a Lewis structure for a neutral molecule that is isoelectronic with them. (a) CN–, (b) NH4+ (c) CO3 2–arrow_forwardUsing the bond energy data from your text (or the internet), determine (show calculations for) the approximate enthalpy change , ∆H, for each of the following reactions: (a) Cl2 (g) + 3F2 (g) ⟶ 2ClF3 (g) (b) H2C=CH2 (g) + H2 (g) ⟶ H3CCH3 (g)arrow_forwardDraw Lewis structures of all the important resonance forms of (a) N3₃⁻; (b) NO₂⁻.arrow_forward
- An important starting material for the manufacture ofpolyphosphazenes is the cyclic molecule (NPCl₂)₃. The mol-ecule has a symmetrical six-membered ring of alternating N and P atoms, with the Cl atoms bonded to the P atoms. The nitrogen-phosphorus bond length is significantly less than that expectedfor an N−P single bond.(a) Draw a likely Lewis structure for the molecule.(b) How many lone pairs of electrons do the ring atoms have?(c) What is the order of the nitrogen-phosphorus bond?arrow_forwardConsider the molecules SCl2, F2, CS2, CF4, and BrCl.(a) Which has bonds that are the most polar?(b) Which molecules have a dipole moment?arrow_forwardCompounds (1) C4H6Cl2 and (2) AlCl3. Explain the difference between them using the following categories. Types of bonding? The number of chlorine atom of each one?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY