Following are the published weights (in pounds) of all of the team members of the San Francisco 49ers from a previous year. 177; 205; 210; 210; 232; 205; 185; 185; 178; 210; 206; 212; 184; 174; 185; 242; 188; 212; 215; 247; 241; 223; 220; 260; 245; 259; 278; 270; 280; 295; 275; 285; 290; 272; 273; 280; 285; 286; 200; 215; 185; 230; 250; 241; 190; 260; 250; 302; 265; 290; 276; 228; 265 a. Organize the data from smallest to largest value. b. Find the median . c. Find the first quartile . d. Find the third quartile. e. Construct a box plot of the data. f. The middle 50% of the weights are from____to___ . g. If our population were all professional football players, would the above data be a sample of weights or the population of weights? Why? h. If our population included every team member who ever played for the San Francisco 49ers, would the above data be a sample of weights or the population of weights? Why? i. Assume the population was the San Francisco 49ers. Find: i. the population mean , μ . ii. the population standard deviation, α . iii. the weight that is two standard deviations below the mean. iv. When Steve Young, quarterback, played football, he weighed 205 pounds. How many standard deviations above or below the mean was he? j. That same year, the mean weight for the Dallas Cowboys was 240.08 pounds with a standard deviation of 44.38 pounds. Emmit Smith weighed in at 209 pounds. With respect to his team, who was lighter, Smith or Young? How did you determine your answer?
Following are the published weights (in pounds) of all of the team members of the San Francisco 49ers from a previous year. 177; 205; 210; 210; 232; 205; 185; 185; 178; 210; 206; 212; 184; 174; 185; 242; 188; 212; 215; 247; 241; 223; 220; 260; 245; 259; 278; 270; 280; 295; 275; 285; 290; 272; 273; 280; 285; 286; 200; 215; 185; 230; 250; 241; 190; 260; 250; 302; 265; 290; 276; 228; 265 a. Organize the data from smallest to largest value. b. Find the median . c. Find the first quartile . d. Find the third quartile. e. Construct a box plot of the data. f. The middle 50% of the weights are from____to___ . g. If our population were all professional football players, would the above data be a sample of weights or the population of weights? Why? h. If our population included every team member who ever played for the San Francisco 49ers, would the above data be a sample of weights or the population of weights? Why? i. Assume the population was the San Francisco 49ers. Find: i. the population mean , μ . ii. the population standard deviation, α . iii. the weight that is two standard deviations below the mean. iv. When Steve Young, quarterback, played football, he weighed 205 pounds. How many standard deviations above or below the mean was he? j. That same year, the mean weight for the Dallas Cowboys was 240.08 pounds with a standard deviation of 44.38 pounds. Emmit Smith weighed in at 209 pounds. With respect to his team, who was lighter, Smith or Young? How did you determine your answer?
a. Organize the data from smallest to largest value.
b. Find the median.
c. Find the first quartile.
d. Find the third quartile.
e. Construct a box plot of the data.
f. The middle 50% of the weights are from____to___ .
g. If our population were all professional football players, would the above data be a sample of weights or the population of weights? Why?
h. If our population included every team member who ever played for the San Francisco 49ers, would the above data be a sample of weights or the population of weights? Why?
i. Assume the population was the San Francisco 49ers. Find:
i. the population mean,
μ
.
ii. the population standard deviation,
α
.
iii. the weight that is two standard deviations below the mean.
iv. When Steve Young, quarterback, played football, he weighed 205 pounds. How many standard deviations above or below the mean was he?
j. That same year, the mean weight for the Dallas Cowboys was 240.08 pounds with a standard deviation of 44.38 pounds. Emmit Smith weighed in at 209 pounds. With respect to his team, who was lighter, Smith or Young? How did you determine your answer?
explain the importance of the Hypothesis test in a business setting, and give an example of a situation where it is helpful in business decision making.
A college wants to estimate what students typically spend on textbooks. A report fromthe college bookstore observes that textbooks range in price from $22 to $186. Toobtain a 95% confidence level for a confidence interval estimate to plus or minus $10,how many students should the college survey? (We may estimate the populationstandard deviation as (range) ÷ 4.)
In a study of how students give directions, forty volunteers were given the task ofexplaining to another person how to reach a destination. Researchers measured thefollowing five aspects of the subjects’ direction-giving behavior:• whether a map was available or if directions were given from memory without a map,• the gender of the direction-giver,• the distances given as part of the directions,• the number of times directions such as “north” or “left” were used,• the frequency of errors in directions.
Identify each of the variables in this study, and whether each is quantitative orqualitative. For each quantitative variable, state whether it is discrete or continuous.
Was this an observational study or an experimental study? Explain your answer.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.