
EBK FUNDAMENTALS OF GENERAL, ORGANIC, A
8th Edition
ISBN: 8220102895805
Author: Peterson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 19.67AP
Interpretation Introduction
Interpretation:
The purpose of positive and negative regulation should be discussed.
Concept Introduction:
Enzyme:
- It is a protein or a molecule which can act as a catalyst for a biological reaction.
- Does not affect the equilibrium point of the reaction.
- Active site of the enzyme is the region where the reaction takes place.
- Enzyme’s activity can be specific which means the activity is limited to a certain substrate and a certain type of reaction and it is referred to as specificity of the enzyme.
Enzyme regulation can be done by two ways: Allosteric control and feedback inhibition.
Allosteric control:
- In this type of regulation, the binding of a molecule at one site on a protein affects the binding of another molecule at a different site.
- Allosteric enzymes have more than one protein chain and two kinds of binding sites.
- One binding site is for the substrate and other is for regulation.
- The advantage is that regulators need not be structurally similar to the substrate because they do not bind to the active site.
- Can be either positive or negative
Positive regulation: It is a type of regulation in which binding a positive regulator changes an unavailable active site so that substrate can fit into the active site and the reaction occurs.
Negative regulation: Binding a negative regulator changes the active site so that the enzyme can no longer bind substrate to the active site.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The beta-lactamase hydrolyzes the lactam-ring in penicillin. Describe the mechanism
of hydrolysis, insuring to include the involvement of S, D, & K in the reaction sequence. Please help
To map the active site of beta-lactamase, the enzyme was hydrolyzed with trypsin to yield a hexapeptide (P1) with the following amino acids. Glu, Lys, Leu, Phe, Met, and Ser. Treatment of P1 with phenyl isothiocyanate yielded a PTH derivative of phenylalanine and a peptide (P2). Treatment of P1 with cyanogenbromide gave an acidic tetrapeptide (P3) and a dipeptide (P4).Treatment of P2 with 1-fluoro-2,4-dinitrobenzene, followed by complete hydrolysis, yields N-2,4-dinitrophenyl-Glu. P1, P2, and P3 contain the active site serine.
Why doesn't D in this hexapeptide not participate in the hydrolysis of the beta-lactam ring even though S, K, and D are involved in the catalyst?
To map the active site of -lactamase, the enzyme was hydrolyzed with trypsin to yield a hexapeptide (P1) with the following amino acids. Glu, Lys, Leu, Phe, Met, and Ser. Treatment of P1 with phenyl isothiocyanate yielded a PTH derivative of phenylalanine and a peptide (P2). Treatment of P1 with cyanogenbromide gave an acidic tetrapeptide (P3) and a dipeptide (P4).Treatment of P2 with 1-fluoro-2,4-dinitrobenzene, followed by complete hydrolysis, yields N-2,4-dinitrophenyl-Glu. P1, P2, and P3 contain the active site serine.
Using the experimental results described above derive the primary sequence of the active site hexapeptide. Please help!
Chapter 19 Solutions
EBK FUNDAMENTALS OF GENERAL, ORGANIC, A
Ch. 19.1 - Prob. 19.1PCh. 19.1 - The enzyme LDH converts lactate to pyruvate. In...Ch. 19.2 - The cofactors NAD+, Cu2+, Zn2+, coenzyme A, FAD,...Ch. 19.3 - Describe the reactions that you would expect these...Ch. 19.3 - Prob. 19.5PCh. 19.3 - Prob. 19.6PCh. 19.3 - Prob. 19.7PCh. 19.3 - Prob. 19.8PCh. 19.4 - Prob. 19.9KCPCh. 19.5 - Prob. 19.10KCP
Ch. 19.5 - Prob. 19.11PCh. 19.5 - Prob. 19.12PCh. 19.6 - Prob. 19.13PCh. 19.6 - Prob. 19.14PCh. 19.7 - (a) L-Threonine is converted to L-isoleucine in a...Ch. 19.8 - AZT (zidovudine) inhibits the synthesis of the HIV...Ch. 19.8 - Prob. 19.3CIAPCh. 19.8 - Prob. 19.16PCh. 19.9 - Does the enzyme described in each of the following...Ch. 19.9 - Prob. 19.18PCh. 19.9 - Compare the structures of vitamin A and vitamin C....Ch. 19.9 - Prob. 19.20PCh. 19.9 - Prob. 19.21KCPCh. 19.9 - Prob. 19.22PCh. 19.9 - Prob. 19.4CIAPCh. 19.9 - Prob. 19.6CIAPCh. 19.9 - Prob. 19.7CIAPCh. 19.9 - Enzyme levels in blood are often elevated in...Ch. 19.9 - Prob. 19.9CIAPCh. 19.9 - Prob. 19.23PCh. 19 - Prob. 19.24UKCCh. 19 - Prob. 19.25UKCCh. 19 - Prob. 19.26UKCCh. 19 - Prob. 19.27UKCCh. 19 - Prob. 19.28APCh. 19 - Explain how the following mechanisms regulate...Ch. 19 - Prob. 19.30APCh. 19 - Prob. 19.31APCh. 19 - Prob. 19.32APCh. 19 - Prob. 19.33APCh. 19 - Prob. 19.34APCh. 19 - Prob. 19.35APCh. 19 - Prob. 19.36APCh. 19 - Prob. 19.37APCh. 19 - Name an enzyme that acts on each molecule. (a)...Ch. 19 - Name an enzyme that acts on each molecule. (a)...Ch. 19 - What features of enzymes make them so specific in...Ch. 19 - Describe in general terms how enzymes act as...Ch. 19 - Prob. 19.42APCh. 19 - Prob. 19.43APCh. 19 - Prob. 19.44APCh. 19 - Prob. 19.45APCh. 19 - Prob. 19.46APCh. 19 - Prob. 19.47APCh. 19 - What is the difference between the lock-and-key...Ch. 19 - Why is the induced-fit model a more likely model...Ch. 19 - Prob. 19.50APCh. 19 - Prob. 19.51APCh. 19 - How do you explain the observation that pepsin, a...Ch. 19 - Prob. 19.53APCh. 19 - Prob. 19.54APCh. 19 - Prob. 19.55APCh. 19 - Prob. 19.56APCh. 19 - Prob. 19.57APCh. 19 - The text discusses three forms of enzyme...Ch. 19 - Prob. 19.59APCh. 19 - Prob. 19.60APCh. 19 - Prob. 19.62APCh. 19 - Prob. 19.63APCh. 19 - The meat tenderizer used in cooking is primarily...Ch. 19 - Prob. 19.65APCh. 19 - Why do allosteric enzymes have two types of...Ch. 19 - Prob. 19.67APCh. 19 - Prob. 19.68APCh. 19 - Prob. 19.69APCh. 19 - Prob. 19.70APCh. 19 - Prob. 19.71APCh. 19 - Prob. 19.72APCh. 19 - Prob. 19.73APCh. 19 - Prob. 19.74APCh. 19 - Prob. 19.75APCh. 19 - Prob. 19.76APCh. 19 - Prob. 19.77APCh. 19 - Prob. 19.78APCh. 19 - Prob. 19.79APCh. 19 - Prob. 19.80CPCh. 19 - Prob. 19.81CPCh. 19 - Prob. 19.82CPCh. 19 - Prob. 19.83CPCh. 19 - Prob. 19.84CPCh. 19 - Prob. 19.85CPCh. 19 - Prob. 19.86CPCh. 19 - Prob. 19.87CPCh. 19 - Prob. 19.88GPCh. 19 - The ability to change a selected amino acid...Ch. 19 - Prob. 19.90GPCh. 19 - Prob. 19.91GP
Knowledge Booster
Similar questions
- Which type of enzyme catalyses the following reaction? oxidoreductase, transferase, hydrolase, lyase, isomerase, or ligase.arrow_forward+NH+ CO₂ +P H₂N + ATP H₂N NH₂ +ADParrow_forwardWhich type of enzyme catalyses the following reaction? oxidoreductase, transferase, hydrolase, lyase, isomerase, or ligase.arrow_forward
- Which features of the curves in Figure 30-2 indicates that the enzyme is not consumed in the overall reaction? ES is lower in energy that E + S and EP is lower in energy than E + P. What does this tell you about the stability of ES versus E + S and EP versus E + P.arrow_forwardLooking at the figure 30-5 what intermolecular forces are present between the substrate and the enzyme and the substrate and cofactors.arrow_forwardprovide short answers to the followings Urgent!arrow_forward
- Pyruvate is accepted into the TCA cycle by a “feeder” reaction using the pyruvatedehydrogenase complex, resulting in acetyl-CoA and CO2. Provide a full mechanismfor this reaction utilizing the TPP cofactor. Include the roles of all cofactors.arrow_forwardB- Vitamins are converted readily into important metabolic cofactors. Deficiency inany one of them has serious side effects. a. The disease beriberi results from a vitamin B 1 (Thiamine) deficiency and ischaracterized by cardiac and neurological symptoms. One key diagnostic forthis disease is an increased level of pyruvate and α-ketoglutarate in thebloodstream. How does this vitamin deficiency lead to increased serumlevels of these factors? b. What would you expect the effect on the TCA intermediates for a patientsuffering from vitamin B 5 deficiency? c. What would you expect the effect on the TCA intermediates for a patientsuffering from vitamin B 2 /B 3 deficiency?arrow_forwardDraw the Krebs Cycle and show the entry points for the amino acids Alanine,Glutamic Acid, Asparagine, and Valine into the Krebs Cycle - (Draw the Mechanism). How many rounds of Krebs will be required to waste all Carbons of Glutamic Acidas CO2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage LearningEssentials of Pharmacology for Health ProfessionsNursingISBN:9781305441620Author:WOODROWPublisher:CengageBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
- Principles Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage LearningCase Studies In Health Information ManagementBiologyISBN:9781337676908Author:SCHNERINGPublisher:Cengage

Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Essentials of Pharmacology for Health Professions
Nursing
ISBN:9781305441620
Author:WOODROW
Publisher:Cengage

Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning

Principles Of Radiographic Imaging: An Art And A ...
Health & Nutrition
ISBN:9781337711067
Author:Richard R. Carlton, Arlene M. Adler, Vesna Balac
Publisher:Cengage Learning
Case Studies In Health Information Management
Biology
ISBN:9781337676908
Author:SCHNERING
Publisher:Cengage