
(a)
Interpretation:
The class of enzymes to which the enzyme involved in the given reaction belongs should be determined.
Concept introduction:
Enzyme:
- It is a protein or a molecule which can act as a catalyst for a biological reaction.
- Does not affect the equilibrium point of the reaction.
- Active site of the enzyme is the region where the reaction takes place.
- Enzyme’s activity can be specific which means the activity is limited to a certain substrate and a certain type of reaction and it is referred to as specificity of the enzyme.
Classification of enzymes:
- Oxidoreductases: Used to catalyse
oxidation-reduction reactions . - Transferases: Used to catalyse transfer of a
functional group from one molecule to another. - Hydrolases: Used to break a large molecule into smaller ones using water.
- Isomerases: Used to catalyse isomerization reactions.
- Lyases: Used to catalyse addition or removal of a small molecule.
- Ligases: Used to catalyse the bonding of two substrate molecules.
(b)
Interpretation:
The subclass of enzymes which would expect to catalyse the given reaction should be determined.
Concept introduction:
Enzyme:
- It is a protein or a molecule which can act as a catalyst for a biological reaction.
- Does not affect the equilibrium point of the reaction.
- Active site of the enzyme is the region where the reaction takes place.
- Enzyme’s activity can be specific which means the activity is limited to a certain substrate and a certain type of reaction and it is referred to as specificity of the enzyme.
Classification of enzymes:
- Oxidoreductases: Used to catalyse oxidation-reduction reactions.
- Transferases: Used to catalyse transfer of a functional group from one molecule to another.
- Hydrolases: Used to break a large molecule into smaller ones using water.
- Isomerases: Used to catalyse isomerization reactions.
- Lyases: Used to catalyse addition or removal of a small molecule.
- Ligases: Used to catalyse the bonding of two substrate molecules.
(c)
Interpretation:
The substrate for the given reaction should be determined.
Concept introduction:
Enzyme:
- It is a protein or a molecule which can act as a catalyst for a biological reaction.
- Does not affect the equilibrium point of the reaction.
- Active site of the enzyme is the region where the reaction takes place.
- Enzyme’s activity can be specific which means the activity is limited to a certain substrate and a certain type of reaction and it is referred to as specificity of the enzyme.
Substrate: The substrate is a molecule upon which enzyme acts.
Product: The substrate is transformed into one or more products and after its formation they are released from the active site.
(d)
Interpretation:
The product for the given reaction should be determined.
Concept introduction:
Enzyme:
- It is a protein or a molecule which can act as a catalyst for a biological reaction.
- Does not affect the equilibrium point of the reaction.
- Active site of the enzyme is the region where the reaction takes place.
- Enzyme’s activity can be specific which means the activity is limited to a certain substrate and a certain type of reaction and it is referred to as specificity of the enzyme.
Substrate: The substrate is a molecule upon which enzyme acts.
Product: The substrate is transformed into one or more products and after its formation they are released from the active site.
(e)
Interpretation:
The name of the enzyme which is used to catalyse the given reaction should be determined.
Concept introduction:
Enzyme:
- It is a protein or a molecule which can act as a catalyst for a biological reaction.
- Does not affect the equilibrium point of the reaction.
- Active site of the enzyme is the region where the reaction takes place.
- Enzyme’s activity can be specific which means the activity is limited to a certain substrate and a certain type of reaction and it is referred to as specificity of the enzyme.
Classification of enzymes:
- Oxidoreductases: Used to catalyse oxidation-reduction reactions.
- Transferases: Used to catalyse transfer of a functional group from one molecule to another.
- Hydrolases: Used to break a large molecule into smaller ones using water.
- Isomerases: Used to catalyse isomerization reactions.
- Lyases: Used to catalyse addition or removal of a small molecule.
- Ligases: Used to catalyse the bonding of two substrate molecules.

Want to see the full answer?
Check out a sample textbook solution
Chapter 19 Solutions
EBK FUNDAMENTALS OF GENERAL, ORGANIC, A
- Calculate pH of a solution prepared by dissolving 1.60g of sodium acetate, in 88.5 mL of 0.10 M acetic acid. Assume the volume change upon dissolving the sodium acetate is negligible. Ka is 1.75 x 10^-5arrow_forwardShow a mechanism that leads to the opening of the ring below under acid-catalyzed conditions. Give the correct Fischer projection for this sugar.arrow_forwardWhat is the stereochemical relationship between B & C?arrow_forward
- Don't use ai or any chat gpt will dislike okk just use accurate information okkk okkk just solve full accurate. don't use guidelines okk just did it accurate 100% sure experts solve it correct complete solutions okkk follow all instructions requirements okkkarrow_forwardhow would you make this plot in excel?arrow_forwardwhat is the productarrow_forward
- Balance the following equation and list of coefficients in order from left to right. SF4+H2O+—-> H2SO3+HFarrow_forwardProblem 15 of 15 Submit Using the following reaction data points, construct Lineweaver-Burk plots for an enzyme with and without an inhibitor by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Using the information from this plot, determine the type of inhibitor present. 1 mM-1 1 s mM -1 [S]' V' with 10 μg per 20 54 10 36 20 5 27 2.5 23 1.25 20 Answer: |||arrow_forward12:33 CO Problem 4 of 15 4G 54% Done On the following Lineweaver-Burk -1 plot, identify the by dragging the Km point to the appropriate value. 1/V 40 35- 30- 25 20 15 10- T Км -15 10 -5 0 5 ||| 10 15 №20 25 25 30 1/[S] Г powered by desmosarrow_forward
- Principles Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning


