Interpretation:
The system at equilibrium responds to the stress to be explained and the factors which can be effects the stresses on equilibrium of the system is to be elaborated.
Concept introduction:
According to Le Chatelier’s principle, when concentration of the reactants and products are changed then equilibrium position is also changes. As lowering the temperature the equilibrium is also shifts towards the right side or product side and more products are formed. So, there is a stress on equilibrium by increasing or decreasing of the concentration of reactants and products. There are various factors which affect the stresses on equilibrium such as addition of reactants, addition of products, removing of the products, moles of reactants verses moles of products, heat and equilibrium positions and temperature and equilibrium constant.

Answer to Problem 13SSC
As lowering the temperature the equilibrium is also shifts towards the right side or product side and more products are formed and vice versa. So, there is a stress on equilibrium by increasing or decreasing of the concentration of reactants and products. With the help of various factors the stresses are overcomes such as addition of reactants, addition of products, removing of the products, moles of reactants verses moles of products, heat and equilibrium positions and temperature and equilibrium constant.
The factors which affect the stresses on the equilibrium system are given as;
a. By addition of reactants
b. By removing of products
c. By addition of products
d. Heat and equilibrium positions
e. Moles of reactants verses mole of products
f. Temperature and equilibrium constant
Explanation of Solution
According to Le Chatelier’s principle, by changing the temperature the equilibrium position is also changes. As temperature is decreases the equilibrium is shifts towards the right side or product side and vice versa. Changing the temperature favors one reaction over the other. On the other hand, at constant temperature the equilibrium is not affected.
Here are the lots of factors which affects the stresses on the equilibrium system such as
1. Addition of reactants: if we added more concentration of reactants to the reaction then no. of collision is increases between the particles. Thus the
2. Addition of products: if a additional product is added to the reaction on products side then equilibrium is shifts towards the left side. The stress is relieved by converting products to reactants.
3. Removing of products: in any equilibrium, the removal of a product results in a shift to the right and the production of more products.
4. Heat and equilibrium position; if heat is added to the reaction then equilibrium is shifts to the side where heat is added up. If temperature is decreases then equilibrium shifts towards the right side because the forward reaction releases the heat and relieves the stress.
5. Temperature and equilibrium constant: when temperature is increases then equilibrium is also changes.
As lowering the temperature the equilibrium is also shifts towards the right side or product side and more products are formed and vice versa. So, there is a stress on equilibrium by increasing or decreasing of the concentration of reactants and products. With the help of various factors the stresses are overcomes such as addition of reactants, addition of products, removing of the products, moles of reactants verses moles of products, heat and equilibrium positions and temperature and equilibrium constant.
The factor which effects the stresses on the equilibrium system are given as;
a. By addition of reactants
b. By removing of products
c. By addition of products
d. Heat and equilibrium positions
e. Moles of reactants verses mole of products
f. Temperature and equilibrium constant
Chapter 17 Solutions
Chemistry: Matter and Change
Additional Science Textbook Solutions
Applications and Investigations in Earth Science (9th Edition)
Brock Biology of Microorganisms (15th Edition)
Campbell Biology in Focus (2nd Edition)
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
Biology: Life on Earth (11th Edition)
- First I wanted to see if you would mind checking my graphs behind me. (They haven't been coming out right)? Second, could you help me explain if the rate of reaction is proportional to iodide and persulfate of each graph. I highlighted my answer and understanding but I'm not sure if I'm on the right track. Thank you in advance.arrow_forwardThe heat of combustion for ethane, C2H6C2H6 , is 47.8 kJ/g. How much heat is produced if 1.65 moles of ethane undergo complete combustion?arrow_forwardReview of this week's reaction: H2NCN (cyanamide) + CH3NHCH2COOH (sarcosine) + NaCl, NH4OH, H2O ----> H2NC(=NH)N(CH3)CH2COOH (creatine) Q7. Draw by hand the reaction of creatine synthesis listed above using line structures without showing the Cs and some of the Hs, but include the lone pairs of electrons wherever they apply. (4 pts) Q8. Considering the Zwitterion form of an amino acid, draw the Zwitterion form of Creatine. (2 pts) Q9. Explain with drawing why the C—N bond shown in creatine structure below can or cannot rotate. (3 pts)arrow_forward
- Would the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardPlease help me answer a. Please and thank you I advance.arrow_forwardDraw both of the chair flips for both the cis and trans isomers for the following compounds: 1,4-diethylcyclohexane 1-methyl-3-secbutylcyclohexanearrow_forward
- Ppplllleeeaaasssseeee hellppp wiithhh thisss physical chemistryyyyy I talked like this because AI is very annoyingarrow_forwardFor this question, if the product is racemic, input both enantiomers in the same Marvin editor. A) Input the number that corresponds to the reagent which when added to (E)-but-2-ene will result in a racemic product. Input 1 for Cl, in the cold and dark Input 2 for Oy followed by H₂O, Zn Input 3 for D₂ with metal catalyst Input 4 for H₂ with metal catalyst B) Draw the skeletal structure of the major organic product made from the reagent in part A Marvin JS Help Edit drawing C) Draw the skeletal structure of the major organic product formed when (2)-but-2-ene is treated with peroxyacetic acid. Marvin 35 Helparrow_forwardMichael Reactions 19.52 Draw the products from the following Michael addition reactions. 1. H&C CH (a) i 2. H₂O* (b) OEt (c) EtO H₂NEt (d) ΕΙΟ + 1. NaOEt 2. H₂O' H H 1. NaOEt 2. H₂O*arrow_forward
- Rank the labeled protons (Ha-Hd) in order of increasing acidity, starting with the least acidic. НОН НЬ OHd Онсarrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? ? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C :0 T Add/Remove step Garrow_forwardThe following equations represent the formation of compound MX. What is the AH for the electron affinity of X (g)? X₂ (g) → 2X (g) M (s) → M (g) M (g) M (g) + e- AH = 60 kJ/mol AH = 22 kJ/mol X (g) + e-X (g) M* (g) +X (g) → MX (s) AH = 118 kJ/mol AH = ? AH = -190 kJ/mol AH = -100 kJ/mol a) -80 kJ b) -30 kJ c) -20 kJ d) 20 kJ e) 156 kJarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





