Interpretation:
The equilibrium response due to a stress of a
Concept introduction:
According to Le Chatelier’s principle, when concentration of the reactants and products are changed then equilibrium position is also changes. As lowering the temperature the equilibrium is also shifts towards the right side or product side and more products are formed. So, there is a stress on equilibrium by increasing or decreasing of the concentration of reactants and products. There are various factors which affect the stresses on equilibrium such as addition of reactants, addition of products, removing of the products, moles of reactants verses moles of products, heat and equilibrium positions and temperature and equilibrium constant.
![Check Mark](/static/check-mark.png)
Answer to Problem 51A
As lowering the temperature the equilibrium is also shifts towards the right side or product side and more products are formed and vice versa. So, there is a stress on equilibrium by increasing or decreasing of the concentration of reactants and products. With the help of various factors the stresses are overcomes such as addition of reactants, addition of products, removing of the products, moles of reactants verses moles of products, heat and equilibrium positions and temperature and equilibrium constant.
The factors which affect the stresses on the equilibrium system are given as;
a. By addition of reactants
b. By removing of products
c. By addition of products
d. Heat and equilibrium positions
e. Moles of reactants verses mole of products
f. Temperature and equilibrium constant
Explanation of Solution
According to Le Chatelier’s principle, by changing the temperature the equilibrium position is also changes. As temperature is decreases the equilibrium is shifts towards the right side or product side and vice versa. Changing the temperature favors one reaction over the other. On the other hand, at constant temperature the equilibrium is not affected.
Here are the lots of factors which affects the stresses on the equilibrium system such as
1. Addition of reactants: if we added more concentration of reactants to the reaction then no. of collision is increases between the particles. Thus the
2. Addition of products: if a additional product is added to the reaction on products side then equilibrium is shifts towards the left side. The stress is relieved by converting products to reactants.
3. Removing of products: in any equilibrium, the removal of a product results in a shift to the right and the production of more products.
4. Heat and equilibrium position ; if heat is added to the reaction then equilibrium is shifts to the side where heat is added up. If temperature is decreases then equilibrium shifts towards the right side because the forward reaction releases the heat and relieves the stress.
5. Temperature and equilibrium constant: when temperature is increases then equilibrium is also changes.
In this way, according to Le Chatelier’s, principle the equilibrium respond to a stress.
As lowering the temperature the equilibrium is also shifts towards the right side or product side and more products are formed and vice versa. So, there is a stress on equilibrium by increasing or decreasing of the concentration of reactants and products. With the help of various factors the stresses are overcomes such as addition of reactants, addition of products, removing of the products, moles of reactants verses moles of products, heat and equilibrium positions and temperature and equilibrium constant.
The factor which effects the stresses on the equilibrium system are given as;
a. By addition of reactants
b. By removing of products
c. By addition of products
d. Heat and equilibrium positions
e. Moles of reactants verses mole of products
f. Temperature and equilibrium constant
Chapter 17 Solutions
Chemistry: Matter and Change
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Anatomy & Physiology (6th Edition)
Microbiology with Diseases by Body System (5th Edition)
Introductory Chemistry (6th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Biology (11th Edition)
- Indicate the type of bond that is considered to be a hydrogen bond.(A). Permanent dipole-dipole interaction between polar molecules.(B). Mixed ionic-covalent bond.(C). Principal interatomic bond(D). Van del Waals forces.arrow_forwardRetro aldol: NaOH H₂O H NaOH & d H₂O Harrow_forwardDraw the product of the reaction shown below. Ignore inorganic byproducts. H conc. HBr Drawing Qarrow_forward
- Calculate the atomic packing factor of diamond knowing that the number of Si atoms per cm3 is 2.66·1022 and that the atomic radii of silicon and oxygen are, respectively, 0.038 and 0.117 nm.arrow_forwardA pdf file of your hand drawn, stepwise mechanisms for the reactions. For each reaction in the assignment, you must write each mechanism three times (there are 10 reactions, so 30 mechanisms). (A) do the work on a tablet and save as a pdf., it is expected to write each mechanism out and NOT copy and paste the mechanism after writing it just once. Everything should be drawn out stepwise and every bond that is formed and broken in the process of the reaction, and is expected to see all relevant lone pair electrons and curved arrows. Aldol: NaOH HO H Δ NaOH Δarrow_forwardNonearrow_forward
- Draw structures corresponding to the following names and give IUPAC names for the following compounds: (8 Point) a) b) c) CH3 CH2CH3 CH3CHCH2CH2CH CH3 C=C H3C H H2C=C=CHCH3 d) CI e) (3E,5Z)-2,6-Dimethyl-1,3,5,7-octatetraene f) (Z)-4-bromo-3-methyl-3-penten-1-yne g) cis-1-Bromo-2-ethylcyclopentane h) (5R)-4,4,5-trichloro-3,3-dimethyldecanearrow_forwardNonearrow_forwardReview: Design a total total synthesis synthesis of the following compound using methyloxacyclopropane and any other necessary reagents.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)