Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17, Problem 17.43E
What change is there in the Sackur-Tetrode equation if
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron is accelerated through an electric
potential to a kinetic energy of 2.24 × 10-15 J.
8C.4 (a) the moment of inertia of a CH4 molecule is 5.27 x 10^-47 kg m^2. What is the minimum energy needed to start it rotating?
8C.5 (a) use the data in 8C.4 (a) to calculate the energy needed excite a CH4 molecule from a state with l=1 to a state with l=2
Determine the value of x if -84.2 = ln(1.34e+4)x
Chapter 17 Solutions
Physical Chemistry
Ch. 17 - Prob. 17.1ECh. 17 - Prob. 17.2ECh. 17 - Prob. 17.3ECh. 17 - Prob. 17.4ECh. 17 - Prob. 17.5ECh. 17 - Prob. 17.6ECh. 17 - Prob. 17.7ECh. 17 - Prob. 17.8ECh. 17 - Prob. 17.9ECh. 17 - Prob. 17.10E
Ch. 17 - Prob. 17.11ECh. 17 - If the ni values are all the same, a shorthand way...Ch. 17 - Prob. 17.13ECh. 17 - Prob. 17.14ECh. 17 - Prob. 17.15ECh. 17 - Prob. 17.16ECh. 17 - Prob. 17.17ECh. 17 - Prob. 17.18ECh. 17 - Prob. 17.19ECh. 17 - Prob. 17.20ECh. 17 - Prob. 17.21ECh. 17 - Prob. 17.22ECh. 17 - Explain why q is a constant for a given system at...Ch. 17 - What is the ratio of ground-state nickel atoms in...Ch. 17 - Ti3+ has the following electronic energy levels:...Ch. 17 - Using the fact that =1/kT, show that equations...Ch. 17 - A one-dimensional particle-in-a-box has a length...Ch. 17 - Prob. 17.28ECh. 17 - Prob. 17.29ECh. 17 - Prob. 17.30ECh. 17 - Prob. 17.31ECh. 17 - What is the value of q at absolute zero? Is it the...Ch. 17 - Prob. 17.33ECh. 17 - Prob. 17.34ECh. 17 - Prob. 17.35ECh. 17 - Prob. 17.36ECh. 17 - Prob. 17.37ECh. 17 - Prob. 17.38ECh. 17 - Prob. 17.39ECh. 17 - Prob. 17.40ECh. 17 - Prob. 17.41ECh. 17 - Prob. 17.42ECh. 17 - What change is there in the Sackur-Tetrode...Ch. 17 - Prob. 17.44ECh. 17 - Prob. 17.45ECh. 17 - Prob. 17.46ECh. 17 - Calculate the thermal de Broglie wavelength of He...Ch. 17 - Prob. 17.48ECh. 17 - Prob. 17.49ECh. 17 - Prob. 17.50ECh. 17 - Prob. 17.51ECh. 17 - Prob. 17.52ECh. 17 - Prob. 17.53ECh. 17 - Use equation 17.56 to determine the change in...Ch. 17 - For an electron that has a velocity of 0.01c where...Ch. 17 - Use the Sackur-Tetrode equation to derive the...Ch. 17 - Prob. 17.57ECh. 17 - Prob. 17.58E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider a collection of 10,000 atoms of rubidium-87, confined inside a box of volume (10-5 m)3. Suppose that T = 0.9Tc. How many atoms are in the ground state? How close is the chemical potential to the ground-state energy? How many atoms are in each of the (threefold-degenerate) first excited states?arrow_forwardQ1 and Q2 pleasearrow_forwardSuppose that 1.0 mol of perfect gas molecules all occupy the lowest energy level of a cubic box. (a) How much work must be done to change the volume of the box by ΔV? (b) Would the work be different if the molecules all occupied a state n ≠ 1? (c) What is the relevance of this discussion to the expression for the expansion work discussed in Topic 2A? (d) Can you identify a distinction between adiabatic and isothermal expansion?arrow_forward
- Calculate the change in energy for an electron transitioning from the n= 4 state to the n=3 state. Give answer in attojoules.arrow_forwarddescribe in words how R^2 and the volume function individually contribute to the radial probability functionarrow_forward2.9 Vibrations in crystals. (a) Calculate the average vibrational energy per mole for Si at 400 K to within the limits of the Einstein theory. Let VẸ = 12 x 1012 s-1, (b) If each atom carried three quanta of vibrational energy, how much vibrational energy would the crystal contain?arrow_forward
- Calculate the momentum of an X-ray photon with a wavelength of 0.17nm. How does this value compare with the momentum of a free electron that has been accelerated through a potential difference of 5000 volts? (Hint: electron mass, m, = 9.10938 x 10" kg; electron charge e = 1.602 x 10"C; speed of light e = 3.0 x 10° m.s'; 1.00 J= 1.00 VC; h = 6.626 x 10"J.s. The various energy units are: 1 J=1 kg.m's", 1.00 cV =1VC, leV = 1.602 x 10"J, 1J=6.242 x 10" eV, etc.). %3D %3Darrow_forwardExplain the physical significance of a negative for delta E. Why must E photon always be positive, while delta E can be negative or positive?arrow_forwardSchrodinger and de Broglie suggested a ‘Wave—particle duality" for small particles—that is, if electromagnetic radiation showed some particle-like properties, then perhaps small punicles might exhibit same wave-like properties. Explain. How does the wave mechanical picture of the atom fundamentally differ from the Bohr model? How do wave mechanical arbitals differ from Bohr’s orbits? What does it mean to say that an orbital represents a probability map for an electron?arrow_forward
- The particle on a ring is a useful model for the motion of electrons around the porphine ring, the conjugated macrocycle that forms the structural basis of the haem group and the chlorophylls; see the structure of the porphine molecule below. -NH N: HN- We may treat the structure as a circular ring of radius 440 pm, with 22 electrons in the conjugated system moving along the perimeter of the ring. Assuming that, in the ground electronic configuration of the molecule, each state is occupied by two electrons, calculate: a. the angular momentum and energy of an electron in the highest occupied level, and b. the frequency of radiation that can induce a transition between the highest occupied and lowest unoccupied levels.arrow_forwardSuppose that you have a solution containing a substance whose molecules have two quantum states corresponding to different orientations of a certain subgroup of atoms. The energy difference between these two molecular states is ΔE = 0.130 eV. You are running an experiment where no more than 5% percent of the molecules can be in the higher-energy state, or it will cause unacceptable noise. Can you run the experiment at room temperature, or do you need to cool your solution? Decide by determining the percentage of molecules in the higher-energy state. The percentage of molecules in the higher-energy state is_____ %.arrow_forwardConsider four non-interacting 'He atoms, each of which can occupy three energy levels of energies 0, a and 2a. The number of microstates having total energy E = 3a isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY