Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 17.30E
Interpretation Introduction
Interpretation:
The validation of the fact that
Concept introduction:
Thermodynamic state functions describe the state of the system. These properties depend on the initial and final states and not on the path by which the state has arrived.
Partition function is defined as the functions of the thermodynamic state variables. It is a pure number and a unitless quantity because it represents the sum of the exponential functions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Briefly describe the contributions of Walter Nernst, T.W. Richards, Max Planck and G. N. Lewis in the development of the third law if thermodynamics
18. Which of the following is the definition of internal energy of
a system?
a.it is the sum of the kinetic energy of all of its components
b.it is the sum of the rotational, vibrational, and translational
energies of all of its components
c.lt refers only to the energies of the nuclei of the atoms of the
component molecules
d.It is the sum of the potential and kinetic energies of the
components
Introduction to state functions (thermodynamics )
Chapter 17 Solutions
Physical Chemistry
Ch. 17 - Prob. 17.1ECh. 17 - Prob. 17.2ECh. 17 - Prob. 17.3ECh. 17 - Prob. 17.4ECh. 17 - Prob. 17.5ECh. 17 - Prob. 17.6ECh. 17 - Prob. 17.7ECh. 17 - Prob. 17.8ECh. 17 - Prob. 17.9ECh. 17 - Prob. 17.10E
Ch. 17 - Prob. 17.11ECh. 17 - If the ni values are all the same, a shorthand way...Ch. 17 - Prob. 17.13ECh. 17 - Prob. 17.14ECh. 17 - Prob. 17.15ECh. 17 - Prob. 17.16ECh. 17 - Prob. 17.17ECh. 17 - Prob. 17.18ECh. 17 - Prob. 17.19ECh. 17 - Prob. 17.20ECh. 17 - Prob. 17.21ECh. 17 - Prob. 17.22ECh. 17 - Explain why q is a constant for a given system at...Ch. 17 - What is the ratio of ground-state nickel atoms in...Ch. 17 - Ti3+ has the following electronic energy levels:...Ch. 17 - Using the fact that =1/kT, show that equations...Ch. 17 - A one-dimensional particle-in-a-box has a length...Ch. 17 - Prob. 17.28ECh. 17 - Prob. 17.29ECh. 17 - Prob. 17.30ECh. 17 - Prob. 17.31ECh. 17 - What is the value of q at absolute zero? Is it the...Ch. 17 - Prob. 17.33ECh. 17 - Prob. 17.34ECh. 17 - Prob. 17.35ECh. 17 - Prob. 17.36ECh. 17 - Prob. 17.37ECh. 17 - Prob. 17.38ECh. 17 - Prob. 17.39ECh. 17 - Prob. 17.40ECh. 17 - Prob. 17.41ECh. 17 - Prob. 17.42ECh. 17 - What change is there in the Sackur-Tetrode...Ch. 17 - Prob. 17.44ECh. 17 - Prob. 17.45ECh. 17 - Prob. 17.46ECh. 17 - Calculate the thermal de Broglie wavelength of He...Ch. 17 - Prob. 17.48ECh. 17 - Prob. 17.49ECh. 17 - Prob. 17.50ECh. 17 - Prob. 17.51ECh. 17 - Prob. 17.52ECh. 17 - Prob. 17.53ECh. 17 - Use equation 17.56 to determine the change in...Ch. 17 - For an electron that has a velocity of 0.01c where...Ch. 17 - Use the Sackur-Tetrode equation to derive the...Ch. 17 - Prob. 17.57ECh. 17 - Prob. 17.58E
Knowledge Booster
Similar questions
- Consider a system similar to the one in Figure 16.8, except that it contains six particles instead of four. What is the probability of having all the particles in only one of the two boxes in the case? Compare this with the similar probability for the system of four particles that we have derived to be equal to 18 . What does this comparison tell us about even larger systems?arrow_forwardProve that statement mathematically?arrow_forwardJustifyTrouton"s rule. What are the sources of discrepancies?arrow_forward
- Chemistry The first excited electronic energy level of the helium atom is 3.13 ✕ 10−18 J above the ground level. Estimate the temperature at which the electronic motion will begin to make a significant contribution to the heat capacity. That is, at what temperature will 5.0% of the population be in the first excited state?arrow_forwardWe discussed in class (several times) how the Boltzmann distribution can be used to relate the relative populations of two states differing in energy by AU. Suppose you are given a vial containing a solution of glucose in water (don't ask why this would happen). For the purpose of this question, glucose exists in one of two conformations-"chair" or "boat"-with an energy difference (AU) of 25.11 kJ mol1 between them. 1. What would be the proportion of molecules in the "boat" conformation at 310K? 2. Thinking back to our discussion of the individual sources of energy that go into the potential energy calculation for a molecule (e.g. Upond Uangle, Uelectrostatic. etc), give a plausible explanation of why the "boat" conformation is less stable. H он "Chair" OH "Вoat" но но но- HO. H. HO. HO H. HO. OHarrow_forwardDescribe enthropy. What the entropy describes about a system, the statistical (boltzmann) definition of the entropy, and two example systems illustrating the Boltzmann definition of entropy.arrow_forward
- What is the relationship between equilibrium, free energy, and electric potential? Include problems that exemplify these relationships.arrow_forwardWhy is the Q a negative if it's suppose to be positive?arrow_forwardAt temperature T, the internal energy of 1mol rigid diatomic molecules is =......arrow_forward
- I need the answer as soon as possiblearrow_forwardDiscuss the relation between the thermodynamic and statistical definitions of entropy.arrow_forwardThe Gibbs Free Energy equation is given by the equation: ΔGΔΗ - ΤAS Where: AG = Gibbs Free Energy change AH = Enthalpy change T = temperature AS = Entropy change In order to solve for the temperature, T, in two steps you must: Step One Add the same expression to each side of the equation to leave the term that includes the variable by itself on the right-hand side of the expression: (Be sure that the answer field changes from light yellow to dark yellow before releasing your answer.) +AG = +AH – TAS Drag and drop your selection from the following list to complete the ans wer: 1 1 ΔΗ -ΔΗ ΔΗ ΔΗarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,World of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
World of Chemistry
Chemistry
ISBN:9780618562763
Author:Steven S. Zumdahl
Publisher:Houghton Mifflin College Div
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax