Concept explainers
Interpretation:
The
Concept introduction:
For example, strong acid dissociates as follows in water,
The
The expression for
The concentration of
The value of
If
If
If
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Chemistry & Chemical Reactivity
- Using the diagrams shown in Problem 10-117, which of the solutions would have the greatest buffer capacity, that is, greatest protection against pH change, when the following occurs? a. A strong acid is added to the solution. b. A strong base is added to the solution.arrow_forwardThe weak base, CIO (hypochlorite ion), is used in the form of NaCIO as a disinfectant in swimming pools and water treatment plants. What are the concentrations of HCIO and OH and the pH of a 0.015 M solution of NaCIO?arrow_forwardFor conjugate acidbase pairs, how are Ka and Kb related? Consider the reaction of acetic acid in water CH3CO2H(aq)+H2O(l)CH3CO2(aq)+H3O+(aq) where Ka = 1.8 105 a. Which two bases are competing for the proton? b. Which is the stronger base? c. In light of your answer to part b. why do we classify the acetate ion (CH3CO2) as a weak base? Use an appropriate reaction to justify your answer. In general, as base strength increases, conjugate acid strength decreases. Explain why the conjugate acid of the weak base NH3 is a weak acid. To summarize, the conjugate base of a weak acid is a weak base and the conjugate acid of a weak base is a weak acid (weak gives you weak). Assuming Ka for a monoprotic strong acid is 1 106, calculate Kb for the conjugate base of this strong acid. Why do conjugate bases of strong acids have no basic properties in water? List the conjugate bases of the six common strong acids. To tie it all together, some instructors have students think of Li+, K+, Rb+, Cs+, Ca2+, Sr2+, and Ba2+ as the conjugate acids of the strong bases LiOH, KOH. RbOH, CsOH, Ca(OH)2, Sr(OH)2, and Ba(OH)2. Although not technically correct, the conjugate acid strength of these cations is similar to the conjugate base strength of the strong acids. That is, these cations have no acidic properties in water; similarly, the conjugate bases of strong acids have no basic properties (strong gives you worthless). Fill in the blanks with the correct response. The conjugate base of a weak acid is a_____base. The conjugate acid of a weak base is a_____acid. The conjugate base of a strong acid is a_____base. The conjugate acid of a strong base is a_____ acid. (Hint: Weak gives you weak and strong gives you worthless.)arrow_forward
- The ionization constant of lactic acid, CH3CH(OH)CO2H, an acid found in the blood after strenuous exercise, is 1.36104. If 20.0 g of lactic acid is used to make a solution with a volume of 1.00 L, what is the concentration of hydronium ion in the solution?arrow_forwardCalculate the pH change that results when 12 mL of 5.3 M NaOH is added to 768 mL of each the following solutions. (See the Acid-Base Table attached.) (a) pure water (b) 0.10 M NH4Cl (c) 0.10 M NH3(d) a solution that is 0.10 M in each NH4+ and NH3arrow_forwardCalculate the pH change that results when 15 mL of 2.7 M HCI is added to 600. mL of each of the following solutions. Use the Acid-Base Table. (a) pure water 4.0 -5.82 (b) 0.10 M CH3COO- 4.0 4.43 (c) 0.10 M CH3COOH 4.0 X (d) a solution that is 0.10 M in each CH3COO and CH3COOH. 4.0arrow_forward
- Calculate the pH change that results when 11 mL of 5.1 M NaOH is added to 790. mL of each the following solutions. Use the Acid-Base Table. (a) pure water 4.0 5.84 (b) 0.10 M NH4CI 4.0 5.43 (c) 0.10 M NH3 4.0✔ X (d) a solution that is 0.10 M in each NH4+ and NH3 4.0✔arrow_forwardCalculate the pH change that results when 15 mL of 2.0 M HCI is added to 580. mL of each of the following solutions (a) pure water 4.0-5.70 (b) 0.10 M CH3COO 4.04.28 (c) 0.10 M CH3COOH 4.0 (d) a solution that is 0.10 M in each CH3COO and CH3COOH. 4.0arrow_forwardA buffer is prepared by adding 20.0 g of sodium acetate(CH3COONa) to 500 mL of a 0.150 M acetic acid(CH3COOH) solution. (a) Determine the pH of the buffer.(b) Write the complete ionic equation for the reaction thatoccurs when a few drops of hydrochloric acid are added tothe buffer. (c) Write the complete ionic equation for the reactionthat occurs when a few drops of sodium hydroxidesolution are added to the buffer.arrow_forward
- A student is provided with a 0.1 M stock solution of NaOH. Student was then asked to mix 50.0 mL of this stock solution of NaOH with 450.0 mL of water to prepare a dilute solution of NaOH. (A) Calculate the molarity of the diluted solution. (B). Calculate the hydronium ion concentration, [H3O+] in the final diluted solution. (8 points) (C ) Calculate the pH of the diluted NaOH solution. (D) Is the final diluted solution acidic, basic or neutral?arrow_forwardA 0.018 M solution of salicylic acid, HOC6H4CO2H, has the same pH as 0.0038 M HNO3solution. (a) Write an equation for the ionization of salicylic acid in aqueous solution. (Assume only the –CO2H portion of the molecule ionizes.) (b) What is the pH of solution containing 0.018 M salicylic acid? (c) Calculate the Ka of salicylic acid.arrow_forwardAn important component of blood is the buffer combination of bicarbonate ion and carbonic acid. Consider blood with a pH of 7.42. (a) What is the ratio of [H2CO3] to [HCO3− ]?(b) What does the pH become if 14% of the bicarbonate ions are converted to carbonic acid? (c) What does the pH become if 26% of the carbonic acid molecules are converted to bicarbonate ions?arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning