Concept explainers
For each of the following reactions, predict whether the equilibrium lies predominantly to the left or to the right. Explain your predictions briefly.
- (a) NH4+(aq) + Br−(aq) ⇄ NH3(aq) + HBr(aq)
- (b) HPO42−(aq) + CH3CO2−(aq) ⇄ PO43−(aq) + CH3CO2H(aq)
- (c)[Fe(H2O)6]3+(aq) + HCO3−(aq) ⇄ [Fe(H2O)5(OH)]2+(aq) + H2CO3(aq)
(a)
Interpretation: The direction of the equilibrium for the given reaction is to be determined.
Concept introduction: An acid-base reaction reaction is represented as written below.
The base will take up the proton from acid and form its conjugate acid and simultaneously acid will form its conjugate base. The equilibrium will be forward or backward can be determined by using the dissociation constants
Answer to Problem 37PS
The equilibrium for the given reaction will lie in left direction predominantly.
Explanation of Solution
The equilibrium for the given reaction will move in left side is explained below.
Here, the conjugate acid
(b)
Interpretation: The direction of the equilibrium for the given reaction is to be determined.
Concept introduction: An acid-base reaction reaction is represented as written below.
The base will take up the proton from acid and form its conjugate acid and simultaneously acid will form its conjugate base. The equilibrium will be forward or backward can be determined by using the dissociation constants
Answer to Problem 37PS
The equilibrium for the given reaction will lie in left direction predominantly.
Explanation of Solution
The equilibrium for the given reaction will move in left side is explained below.
Here, the conjugate acid
(c)
Interpretation: The direction of the equilibrium for the given reaction is to be determined.
Concept introduction: An acid-base reaction reaction is represented as written below.
The base will take up the proton from acid and form its conjugate acid and simultaneously acid will form its conjugate base. The equilibrium will be forward or backward can be determined by using the dissociation constants
Answer to Problem 37PS
The equilibrium for the given reaction will lie in right side predominantly.
Explanation of Solution
The equilibrium for the given reaction will move in left side is explained below.
Here, the acid
Want to see more full solutions like this?
Chapter 16 Solutions
Chemistry & Chemical Reactivity
- In each of the following acid-base reactions, identify the Brnsted acid and base on the left and their conjugate partners on the right. (a) HCO2H(aq) + H2O() HCO2(aq) + H3O+(aq) (b) NH3(aq) + H2S(aq) NH4+(aq) + HS(aq) (c) HSO4(aq) + OH(aq) SO42(aq) + H2O+()arrow_forwardIn each of the following acid-base reactions, identify the Brnsted acid and base on the left and their conjugate partners on the right. (a) C2H5N(aq) + CH3CO2H(aq) C5H5NH+(aq) + CH3CO2(aq) (b) N2H4(aq) + HSO4(aq) N2H5+(aq) + SO42(aq) (c) [Al(H2O)6]3+ (aq) + OH(aq) [Al(H2O)5OH]2+ (aq) + H2O+()arrow_forwardIn the following net ionic reaction, identify each species as either a Brnsted-Lowry acid or a Brnsted -Lowry base: CH3COO(aq)+HS(aq)CH3COOH(aq)+S2(aq). Identify the conjugate of each reactant and state whether it is a conjugate acid or a conjugate base.arrow_forward
- Write the Lewis structures of the reactants and product of each of the following equations, and identify the Lewis acid and the Lewis base in each: (a) CS2+SHHCS3 (b) BF3+FBF4 (c) I+SnI2SnI3 (d) Al(OH)3+OHAl(OH)4 (e) F+SO3SFO3arrow_forwardHydrazine, N2H4 (having the structure H2NNH2), and its derivatives have been used as rocket fuels. Draw the Lewis electron-dot formula for the hydrazine molecule. Describe the geometries expected about the nitrogen atoms in this molecule. Why would you expect hydrazine to be basic? Which substance, NH3 or N2H4, would you expect to be more basic? Why? Write the chemical equation in which hydrazine reacts with hydrochloric acids to form the salt N2H5Cl. Consider the positive ion of this salt. How does its basic character compare with that of NH3 and N2H4? Explain.arrow_forwardThe following reactions illustrate Brnsted acid-base behavior. Complete each equation. a.HI(aq)+?H3O+(aq)+I(aq) b.NH3(l)+?NH4++NH2 c.H2C2O4(aq)+H2O(l)?+HC2O4(aq) d.H2N2O2(aq)+H2O(l)H3O+(aq)+? e.?+H2O(l)H3O+(aq)+CO32(aq)arrow_forward
- Which of the terms weak, strong, monoprotic, diprotic, and triprotic characterize(s) each of the following acids? More than one term may apply in a given situation. a. H3PO4 b. H3PO3 c. HBr d. HC2H3O2arrow_forwardIonization of the first proton from H2SO4 is complete (H2SO4 is a strong acid); the acid-ionization constant for the second proton is 1.1 102. a What would be the approximate hydronium-ion concentration in 0.100 M H2SO4 if ionization of the second proton were ignored? b The ionization of the second proton must be considered for a more exact answer, however. Calculate the hydronium-ion concentration in 0.100 M H2SO4, accounting for the ionization of both protons.arrow_forwardPure liquid ammonia ionizes in a manner similar to that of water. (a) Write the equilibrium for the autoionization of liquid ammonia. (b) Identify the conjugate acid form and the base form of the solvent. (c) Is NaNH2 an acid or a base in this solvent? (d) Is ammonium bromide an acid or a base in this solvent?arrow_forward
- Natural gas frequently contains hydrogen sulfide, H2S. H2S is removed from natural gas by passing it through aqueous ethanolamine, HOCH2CH2NH2 (an ammonia derivative), which reacts with the hydrogen sulfide. Write the equation for the reaction. Identify each reactant as either a Lewis acid or a Lewis base. Explain how you arrived at your answer.arrow_forwardChloroacetic acid, HC2H2ClO2, has a greater acid strength than acetic acid, because the electronegative chlorine atom pulls electrons away from the OH bond and thus weakens it. Calculate the hydronium-ion concentration and the pH of a 0.0020 M solution of chloroacetic acid, Ka is 1.3 103.arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning