Chemistry & Chemical Reactivity
9th Edition
ISBN: 9781133949640
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 88GQ
For each of the following reactions predict whether the equilibrium lies predominantly to the left or to the right. Explain your prediction briefly.
- (a) HCO3−(aq) + SO42−(aq) ⇄ CO32−(aq) + HSO4−(aq)
- (b) HSO4−(aq) + CH3CO2−(aq) ⇄ SO42−(aq) + CH3CO2H(aq)
- (c) [Co(H2O)6]2+(aq) + CH3CO2−(aq) ⇄ [Co(H2O)5(OH)]+(aq) + CH3CO2H(aq)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
HA is a weak acid. Which equilibrium corresponds to the equilibrium constant Kb for A−?
Group of answer choices
HA(aq) + H2O(l) ⇌ H2A+(aq) + OH−
A−(aq) + H3O+(aq) ⇌ HA (aq) + H2O(l)
HA(aq) + OH−(aq) ⇌ H2O(l) + H+(aq)
A−(aq) + H2O(l) ⇌ HA(aq) + OH−(aq)
A−(aq) + OH−(aq) ⇌ HOA2−
Consider the following acidic equilibrium: H₂CO₃(aq) + H₂O(l) ⇌ HCO₃⁻(aq) + H₃O⁺(aq). If you add NaHCO₃ to this solution, which of the following will occur?
A) The reaction quotient will decrease.
B) The reaction will shift in the reverse direction.
C) The equilibrium constant will increase.
D) No changes to the equilibrium positions will take place.
In the following reactions, indicate the acid, base, conjugate acid, and conjugate base.
(a)HF + NH3→NH4++ F –
(b)NaHSO4+ HClO3⇌H2SO4+ NaClO3
Chapter 16 Solutions
Chemistry & Chemical Reactivity
Ch. 16.1 - 1. H3PO4 phosphoric acid, can donate two protons...Ch. 16.1 - 2. The cyanide ion, CN−, accepts a proton from...Ch. 16.1 - 3. In the following reaction, identify the acid on...Ch. 16.1 - Prob. 4RCCh. 16.2 - What are the hydronium ion and hydroxide ion...Ch. 16.2 - What is the pH of a 0.0012 M NaOH solution at 25C?...Ch. 16.2 - The pH of a diet soda is 432 at 25C. What is the...Ch. 16.2 - If the pH of a solution containing the strong base...Ch. 16.3 - Prob. 1RCCh. 16.3 - Which acid has the strongest conjugate base? (a)...
Ch. 16.3 - Prob. 3RCCh. 16.3 - Prob. 4RCCh. 16.3 - Prob. 5RCCh. 16.4 - For each of the following salts in water, predict...Ch. 16.4 - Prob. 1RCCh. 16.4 - Prob. 2RCCh. 16.5 - (a) Which is the stronger Bronsted acid, HCO3 or...Ch. 16.5 - Prob. 1RCCh. 16.5 - 2. In the following reaction, does the equilibrium...Ch. 16.6 - Equal amounts (moles) of HCl(aq) and NaCN(aq) are...Ch. 16.6 - 2. Equal amounts (moles) of acetic acid(aq) and...Ch. 16.6 - Prob. 3RCCh. 16.7 - A solution prepared from 0.055 mol of butanoic...Ch. 16.7 - What are the equilibrium concentrations of acetic...Ch. 16.7 - What are the equilibrium concentrations of HF, F...Ch. 16.7 - The weak base, CIO (hypochlorite ion), is used in...Ch. 16.7 - Calculate the pH after mixing 15 mL of 0.12 M...Ch. 16.7 - 1. What is [H3O+] in a 0.10 M solution of HCN at...Ch. 16.7 - 2. A 0.040 M solution of an acid, HA, has a pH of...Ch. 16.7 - What are the pH and ion concentrations in a...Ch. 16.7 - Prob. 4RCCh. 16.7 - Prob. 1QCh. 16.7 - Prob. 2QCh. 16.7 - The pKa, of the conjugate acid of atropine is...Ch. 16.8 - What is the pH of a 0.10 M solution of oxalic...Ch. 16.8 - Hydrazine (N2H4) is like CO32 in that it is a...Ch. 16.9 - Which of the following is the stronger acid? (a)...Ch. 16.9 - Prob. 2RCCh. 16.9 - Prob. 3RCCh. 16.10 - 1. Which of the following can act as a Lewis acid?...Ch. 16.10 - 2. The molecule whose structure is illustrated...Ch. 16.10 - Convert the pK values to K values for the...Ch. 16.10 - Other solvents also undergo autoionization. (a)...Ch. 16.10 - Prob. 3QCh. 16.10 - Prob. 4QCh. 16.10 - To measure the relative strengths of bases...Ch. 16 - Write the formula and the give the name of the...Ch. 16 - Write the formula and give the name of the...Ch. 16 - What are the products of each of the following...Ch. 16 - What are the products of each of the following...Ch. 16 - Write balanced equations showing how the hydrogen...Ch. 16 - Write a balanced equation showing how the HPO42...Ch. 16 - In each of the following acid-base reactions,...Ch. 16 - In each of the following acid-base reactions,...Ch. 16 - An aqueous solution has a pH of 3.75. What is the...Ch. 16 - A saturated solution of milk of magnesia. Mg(OH)2,...Ch. 16 - What is the pH of a 0.0075 M solution of HCl? What...Ch. 16 - What is the pH of a 1.2 104 M solution of KOH?...Ch. 16 - What is the pH of a 0.0015 M solution of Ba(OH)2?Ch. 16 - The pH of a solution of Ba(OH)2 is 10.66 at 25 ....Ch. 16 - Several acids are listed here with their...Ch. 16 - Several acids are listed here with their...Ch. 16 - Which of the following ions or compounds has the...Ch. 16 - Which of the following compounds or ions has the...Ch. 16 - Which of the following compounds or ions has the...Ch. 16 - Which of the following compounds or ion has the...Ch. 16 - Dissolving K2CO3 in water gives a basic solution....Ch. 16 - Dissolving ammonium bromide in water gives an...Ch. 16 - If each of the salts listed here were dissolved in...Ch. 16 - Which of the following common food additives gives...Ch. 16 - Prob. 25PSCh. 16 - Prob. 26PSCh. 16 - Prob. 27PSCh. 16 - An organic acid has pKa = 8.95. What is its Ka...Ch. 16 - Prob. 29PSCh. 16 - Which is the stronger of the following two acids?...Ch. 16 - Chloroacetic acid (ClCH2CO2H) has Ka = 1.41 103....Ch. 16 - A weak base has Kb = 1.5 109. What is the value...Ch. 16 - The trimethylammonium ion, (CH3)3NH+, is the...Ch. 16 - The chromium(III) ion in water, [Cr(H2O)6]3+. Is a...Ch. 16 - Acetic acid and sodium hydrogen carbonate, NaHCO3,...Ch. 16 - Ammonium chloride and sodium dihydrogen phosphate,...Ch. 16 - For each of the following reactions, predict...Ch. 16 - For each of the following reactions, predict...Ch. 16 - Equal molar quantities of sodium hydroxide and...Ch. 16 - Equal molar quantities of hydrochloric acid and...Ch. 16 - Equal molar quantities of acetic acid and sodium...Ch. 16 - Equal molar quantities of ammonia and sodium...Ch. 16 - A 0.015 M solution of hydrogen cyanate, HOCN, has...Ch. 16 - A 0.10 M solution of chloroacetic acid, CICH2CO2H,...Ch. 16 - A 0.025 M solution of hydroxyl amine has a pH of...Ch. 16 - Methylamine, CH3NH2, is a weak base. CH3NH2(aq) +...Ch. 16 - A 2.5 103 M solution of an unknown acid has a pH...Ch. 16 - A 0.015M solution of a base has a pH of 10.09 a)...Ch. 16 - What are the equilibrium concentrations of...Ch. 16 - The ionizations constant of a very weak acid, HA...Ch. 16 - What are the equilibrium concentration of H3O+, CN...Ch. 16 - Phenol (C6H5OH) commonly called carbolic acid is a...Ch. 16 - What are the equilibrium concentrations of...Ch. 16 - A hypothetical weak base has Kb=5.0104.Calculate...Ch. 16 - The weak base methylamine, CH3NH2, has Kb=4.2104....Ch. 16 - Calculate the pH of a 0.12 M aqueous solution of...Ch. 16 - Calculate the pH of a 0.0010 M aqueous solution of...Ch. 16 - A solution of hydrofluoric acid, HF, has a pH of...Ch. 16 - Calculate the hydronium ion concentration and pH...Ch. 16 - Calculate the hydronium ion concentration and pH...Ch. 16 - Sodium cyanide is the salt of the weak acid HCN....Ch. 16 - The sodium salt of propionic acid, NaCH3CH2CO2 is...Ch. 16 - Calculate the hydronium ion concentration and pH...Ch. 16 - Calculate the hydronium ion concentration and the...Ch. 16 - For each of the following cases, decide whether...Ch. 16 - For each of the following cases, decide whether...Ch. 16 - Oxalic acid, H2C2O4, is a diprotic acid. Write a...Ch. 16 - Sodium carbonate is a diprotic base. Write a...Ch. 16 - Prove that Ka1 Kb2 = Kw for oxalic acid H2C2O4,...Ch. 16 - Prove that Ka3 Kb1 = Kw for phosphoric acid,...Ch. 16 - Sulphurous acid, H2SO3, is a weak acid capable of...Ch. 16 - Ascorbic acid (vitamin C, C6H8O6) is a diprotic...Ch. 16 - Hydrazine, N2H4, can interact with water in two...Ch. 16 - Ethylene diamine, H2NCH2CH2NH2, can interact with...Ch. 16 - Which should be stronger acid, HOCN or HCN?...Ch. 16 - Prob. 76PSCh. 16 - Explain why benzene sulfonic acid is a Brnsted...Ch. 16 - The structure of ethylene diamine is illustrated...Ch. 16 - Decide whether each of the following substances...Ch. 16 - Decide whether each of the following substances...Ch. 16 - Carbon monoxide forms complexes with low-valent...Ch. 16 - Trimethylamine, (CH3)3N, is a common reagent. It...Ch. 16 - About this time, you may be wishing you had an...Ch. 16 - Consider the following ions: NH4+, CO32, Br, S2,...Ch. 16 - A 2.50 g sample of a solid that could be Ba(OH)2...Ch. 16 - In a particular solution, acetic acid is 11%...Ch. 16 - Hydrogen, H2S, and sodium acetate, NaCH3CO2 are...Ch. 16 - For each of the following reactions predict...Ch. 16 - A monoprotic acid HX has Ka = 1.3 103. Calculate...Ch. 16 - Arrange the following 0.10M solutions in order of...Ch. 16 - m-Nitrophenol, a weak acid, can be used as a pH...Ch. 16 - The butylammonium ion, C4H9NH3+, has a Ka of 2.3 ...Ch. 16 - The local anaesthetic novocaine is the hydrogen...Ch. 16 - Pyridine is weak organic base and readily forms a...Ch. 16 - The base ethylamine (CH3CH2NH2) has a Kb of. A...Ch. 16 - Chloroacetic acid, ClCH2CO2H, is a moderately weak...Ch. 16 - Saccharin (HC7H4NO3S) is a weak acid with pKa =...Ch. 16 - Given the following solutions: (a) 0.1 M NH3 (b)...Ch. 16 - For each of the following salts, predict whether a...Ch. 16 - Nicotine, C10H14N2, has two basic nitrogen atoms...Ch. 16 - Prob. 101GQCh. 16 - The equilibrium constant for the reaction of...Ch. 16 - The equilibrium constant for the reaction of...Ch. 16 - Calculate the pH of the solution that results from...Ch. 16 - To what volume should 1.00 102 mL of any weak...Ch. 16 - The hydrogen phthalate ion, C8HsO4, is a weak acid...Ch. 16 - Prob. 107GQCh. 16 - Prob. 108GQCh. 16 - Prob. 109ILCh. 16 - Prob. 110ILCh. 16 - Prob. 111ILCh. 16 - A hydrogen atom in the organic base pyridine,...Ch. 16 - Nicotinic acid, C6H5NO2, is found in minute...Ch. 16 - Prob. 114ILCh. 16 - Sulfanilic acid, which is used in making dyes, is...Ch. 16 - Amino acids are an important group of compounds....Ch. 16 - How can water be both a Brnsied base and a Lewis...Ch. 16 - The nickel(II) ion exists as [Ni(H2O)4]2+ in...Ch. 16 - The halogens form three stable, weak acids, HOX....Ch. 16 - The acidity of the oxoacids was described in...Ch. 16 - Perchloric acid behaves as an acid, even when it...Ch. 16 - You purchase a bottle of water. On checking its...Ch. 16 - Prob. 123SCQCh. 16 - Prob. 124SCQCh. 16 - Prob. 125SCQCh. 16 - Consider a salt of a weak base and a weak acid...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- . In each of the following chemical equations, identify the conjugate acid-base pairs. a. NH3(aq)+H2O(l)NH4+(aq)+OH(aq) b. PO43(aq)+H2O(1)HPO42(aq)+OH(aq) c. C2H3O2(aq)+H2O(l)HC2H3O2(aq)+OH(aq)arrow_forwardAcid-Base Equilibria Many factors contribute to the acidity of organic compounds. Electronegativity, resonance, induction, hybridization, aromaticity, and atomic size, all play a role. In the following comparisons, you are asked to identify the factor(s) that would be most important to analyze when predicting relative acidity, and then to predict the trend in acidity and pKa values. For each of the following pairs of compounds answer the following two multiple-choice questions. 1. What factor(s) are the most important to consider when predicting the relative acidity of the two compounds? a. Electronegativity of the atom possessing the hydrogen. b. Resonance stabilization of the anionic conjugate base. c. Inductive stabilization of the anionic conjugate base. d. Hybridization of the atom possessing the hydrogen. e. The atomic size of the atom possessing the hydrogen.arrow_forwardIn each of the following acid-base reactions, identify the Brnsted acid and base on the left and their conjugate partners on the right. (a) HCO2H(aq) + H2O() HCO2(aq) + H3O+(aq) (b) NH3(aq) + H2S(aq) NH4+(aq) + HS(aq) (c) HSO4(aq) + OH(aq) SO42(aq) + H2O+()arrow_forward
- The following reactions illustrate Brnsted acid-base behavior. Complete each equation. a.HI(aq)+?H3O+(aq)+I(aq) b.NH3(l)+?NH4++NH2 c.H2C2O4(aq)+H2O(l)?+HC2O4(aq) d.H2N2O2(aq)+H2O(l)H3O+(aq)+? e.?+H2O(l)H3O+(aq)+CO32(aq)arrow_forwardIn each of the following acid-base reactions, identify the Brnsted acid and base on the left and their conjugate partners on the right. (a) C2H5N(aq) + CH3CO2H(aq) C5H5NH+(aq) + CH3CO2(aq) (b) N2H4(aq) + HSO4(aq) N2H5+(aq) + SO42(aq) (c) [Al(H2O)6]3+ (aq) + OH(aq) [Al(H2O)5OH]2+ (aq) + H2O+()arrow_forwardIdentify the Lewis acid and Lewis base in each of the followingreactions:(a) HNO2(aq) + OH-(aq) ⇌ NO2-(aq) + H2O(l)(b) FeBr3(s) + Br-(aq) ⇌ FeBr4-(aq)(c) Zn2+(aq) + 4 NH3(aq) ⇌ Zn(NH3)42+(aq)(d) SO2(g) + H2O(l) ⇌ H2SO3(aq)arrow_forward
- Identify the acid-base conjugate pairs in each of the following reactions: (a) CH3COO + HCN == CH3COOH + CN- (b) HCO3 + HCO3 == H2CO3 + CO3 ? (c) H2PO4 + NH3 == HPO4-2 + NHạ+arrow_forwardCalculate the equilibrium constant for the acid–base reaction between the reactants in each of the following pairs: (a) HCl + H2O (b) CH3COOH + H2O (c) CH3NH2 + H2O (d) CH3N+H3 + H2Oarrow_forwardPredict the products of the following acid–base reactions,and predict whether the equilibrium lies to the left or to theright of the reaction arrow:(a) NH4+(aq) + OH-(aq) ⇌(b) CH3COO-(aq) + H3O+(aq) ⇌(c) HCO3-(aq) + F-(aq) ⇌arrow_forward
- The following reaction shows the first deprotonation of carbonic acid. Identify the conjugate acid. H₂CO3 (1) H₂O (1) HCO3- (aq) H3O+ (aq) H₂CO3 (1) + H₂0 (1)→ HCO3 (aq) + H3O+ (aq)arrow_forwardWhat is the conjugate acid of each of the following? What is the conjugate base of each?(a) H2S(b) H2 PO4−(c) PH3(d) HS−(e) HSO3−(f) H3 O2+(g) H4N2(h) CH3OHarrow_forwardWater is amphoteric which means that it can either act as a Bronsted-Lowry acid or base. In the reaction below, identify if water is playing the role of Bronsted-Lowry acid, Bronsted-Lowry acid base, or Neither. CH3NH2 (aq) + H2O (l) ↔ CH3NH3+ (aq) + OH- (aq) acid Neither acid nor base basearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY