Chemistry & Chemical Reactivity
9th Edition
ISBN: 9781133949640
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16.7, Problem 1CYU
A solution prepared from 0.055 mol of butanoic acid and sufficient water to give 1.0 L of solution has a pH of 2.72. Determine Ka for butanoic acid. The acid ionizes according to the balanced equation
CH3CH2CH2CO2H(aq) + H2O(l)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A chemical system is set up by placing some solid ammonium chloride in an ammonia solution.
The equilibrium established can be represented as follows:
NH4*(aq) + H2O(e) 2 H30*(aq) + NH3(aq)
The pH of the solution is taken, then a small amount of NaOH(aq) is added and the pH is taken
again.
What can be said about the change in pH for the solution?
The pH significantly increases because a strong base has been added to the solution.
The pH significantly decreases because a strong base has been added to the solution.
There is very little change to the pH of the solution. If anything the pH of the solution
decreases slightly.
There is very little change to the pH of the solution. If anything the pH of the solution
increases slightly.
Give the explanation formula which using for the calculation.
Give the explanation formula which using for the calculation.
1) A mixture of 5.1 x 10-3 moles of HSO4 (hydrogen sulfate) is dissolved in 25 mL of water. At equilibrium the vessel contains SO4² (sulfate) and H3O+ (hydronium). What is the pH at equilibrium? HSO4 (aq) + H2O(l) = SO4²¯(aq) + H3O+(aq) Ka = 1.2 x 10-2
Chapter 16 Solutions
Chemistry & Chemical Reactivity
Ch. 16.1 - 1. H3PO4 phosphoric acid, can donate two protons...Ch. 16.1 - 2. The cyanide ion, CN−, accepts a proton from...Ch. 16.1 - 3. In the following reaction, identify the acid on...Ch. 16.1 - Prob. 4RCCh. 16.2 - What are the hydronium ion and hydroxide ion...Ch. 16.2 - What is the pH of a 0.0012 M NaOH solution at 25C?...Ch. 16.2 - The pH of a diet soda is 432 at 25C. What is the...Ch. 16.2 - If the pH of a solution containing the strong base...Ch. 16.3 - Prob. 1RCCh. 16.3 - Which acid has the strongest conjugate base? (a)...
Ch. 16.3 - Prob. 3RCCh. 16.3 - Prob. 4RCCh. 16.3 - Prob. 5RCCh. 16.4 - For each of the following salts in water, predict...Ch. 16.4 - Prob. 1RCCh. 16.4 - Prob. 2RCCh. 16.5 - (a) Which is the stronger Bronsted acid, HCO3 or...Ch. 16.5 - Prob. 1RCCh. 16.5 - 2. In the following reaction, does the equilibrium...Ch. 16.6 - Equal amounts (moles) of HCl(aq) and NaCN(aq) are...Ch. 16.6 - 2. Equal amounts (moles) of acetic acid(aq) and...Ch. 16.6 - Prob. 3RCCh. 16.7 - A solution prepared from 0.055 mol of butanoic...Ch. 16.7 - What are the equilibrium concentrations of acetic...Ch. 16.7 - What are the equilibrium concentrations of HF, F...Ch. 16.7 - The weak base, CIO (hypochlorite ion), is used in...Ch. 16.7 - Calculate the pH after mixing 15 mL of 0.12 M...Ch. 16.7 - 1. What is [H3O+] in a 0.10 M solution of HCN at...Ch. 16.7 - 2. A 0.040 M solution of an acid, HA, has a pH of...Ch. 16.7 - What are the pH and ion concentrations in a...Ch. 16.7 - Prob. 4RCCh. 16.7 - Prob. 1QCh. 16.7 - Prob. 2QCh. 16.7 - The pKa, of the conjugate acid of atropine is...Ch. 16.8 - What is the pH of a 0.10 M solution of oxalic...Ch. 16.8 - Hydrazine (N2H4) is like CO32 in that it is a...Ch. 16.9 - Which of the following is the stronger acid? (a)...Ch. 16.9 - Prob. 2RCCh. 16.9 - Prob. 3RCCh. 16.10 - 1. Which of the following can act as a Lewis acid?...Ch. 16.10 - 2. The molecule whose structure is illustrated...Ch. 16.10 - Convert the pK values to K values for the...Ch. 16.10 - Other solvents also undergo autoionization. (a)...Ch. 16.10 - Prob. 3QCh. 16.10 - Prob. 4QCh. 16.10 - To measure the relative strengths of bases...Ch. 16 - Write the formula and the give the name of the...Ch. 16 - Write the formula and give the name of the...Ch. 16 - What are the products of each of the following...Ch. 16 - What are the products of each of the following...Ch. 16 - Write balanced equations showing how the hydrogen...Ch. 16 - Write a balanced equation showing how the HPO42...Ch. 16 - In each of the following acid-base reactions,...Ch. 16 - In each of the following acid-base reactions,...Ch. 16 - An aqueous solution has a pH of 3.75. What is the...Ch. 16 - A saturated solution of milk of magnesia. Mg(OH)2,...Ch. 16 - What is the pH of a 0.0075 M solution of HCl? What...Ch. 16 - What is the pH of a 1.2 104 M solution of KOH?...Ch. 16 - What is the pH of a 0.0015 M solution of Ba(OH)2?Ch. 16 - The pH of a solution of Ba(OH)2 is 10.66 at 25 ....Ch. 16 - Several acids are listed here with their...Ch. 16 - Several acids are listed here with their...Ch. 16 - Which of the following ions or compounds has the...Ch. 16 - Which of the following compounds or ions has the...Ch. 16 - Which of the following compounds or ions has the...Ch. 16 - Which of the following compounds or ion has the...Ch. 16 - Dissolving K2CO3 in water gives a basic solution....Ch. 16 - Dissolving ammonium bromide in water gives an...Ch. 16 - If each of the salts listed here were dissolved in...Ch. 16 - Which of the following common food additives gives...Ch. 16 - Prob. 25PSCh. 16 - Prob. 26PSCh. 16 - Prob. 27PSCh. 16 - An organic acid has pKa = 8.95. What is its Ka...Ch. 16 - Prob. 29PSCh. 16 - Which is the stronger of the following two acids?...Ch. 16 - Chloroacetic acid (ClCH2CO2H) has Ka = 1.41 103....Ch. 16 - A weak base has Kb = 1.5 109. What is the value...Ch. 16 - The trimethylammonium ion, (CH3)3NH+, is the...Ch. 16 - The chromium(III) ion in water, [Cr(H2O)6]3+. Is a...Ch. 16 - Acetic acid and sodium hydrogen carbonate, NaHCO3,...Ch. 16 - Ammonium chloride and sodium dihydrogen phosphate,...Ch. 16 - For each of the following reactions, predict...Ch. 16 - For each of the following reactions, predict...Ch. 16 - Equal molar quantities of sodium hydroxide and...Ch. 16 - Equal molar quantities of hydrochloric acid and...Ch. 16 - Equal molar quantities of acetic acid and sodium...Ch. 16 - Equal molar quantities of ammonia and sodium...Ch. 16 - A 0.015 M solution of hydrogen cyanate, HOCN, has...Ch. 16 - A 0.10 M solution of chloroacetic acid, CICH2CO2H,...Ch. 16 - A 0.025 M solution of hydroxyl amine has a pH of...Ch. 16 - Methylamine, CH3NH2, is a weak base. CH3NH2(aq) +...Ch. 16 - A 2.5 103 M solution of an unknown acid has a pH...Ch. 16 - A 0.015M solution of a base has a pH of 10.09 a)...Ch. 16 - What are the equilibrium concentrations of...Ch. 16 - The ionizations constant of a very weak acid, HA...Ch. 16 - What are the equilibrium concentration of H3O+, CN...Ch. 16 - Phenol (C6H5OH) commonly called carbolic acid is a...Ch. 16 - What are the equilibrium concentrations of...Ch. 16 - A hypothetical weak base has Kb=5.0104.Calculate...Ch. 16 - The weak base methylamine, CH3NH2, has Kb=4.2104....Ch. 16 - Calculate the pH of a 0.12 M aqueous solution of...Ch. 16 - Calculate the pH of a 0.0010 M aqueous solution of...Ch. 16 - A solution of hydrofluoric acid, HF, has a pH of...Ch. 16 - Calculate the hydronium ion concentration and pH...Ch. 16 - Calculate the hydronium ion concentration and pH...Ch. 16 - Sodium cyanide is the salt of the weak acid HCN....Ch. 16 - The sodium salt of propionic acid, NaCH3CH2CO2 is...Ch. 16 - Calculate the hydronium ion concentration and pH...Ch. 16 - Calculate the hydronium ion concentration and the...Ch. 16 - For each of the following cases, decide whether...Ch. 16 - For each of the following cases, decide whether...Ch. 16 - Oxalic acid, H2C2O4, is a diprotic acid. Write a...Ch. 16 - Sodium carbonate is a diprotic base. Write a...Ch. 16 - Prove that Ka1 Kb2 = Kw for oxalic acid H2C2O4,...Ch. 16 - Prove that Ka3 Kb1 = Kw for phosphoric acid,...Ch. 16 - Sulphurous acid, H2SO3, is a weak acid capable of...Ch. 16 - Ascorbic acid (vitamin C, C6H8O6) is a diprotic...Ch. 16 - Hydrazine, N2H4, can interact with water in two...Ch. 16 - Ethylene diamine, H2NCH2CH2NH2, can interact with...Ch. 16 - Which should be stronger acid, HOCN or HCN?...Ch. 16 - Prob. 76PSCh. 16 - Explain why benzene sulfonic acid is a Brnsted...Ch. 16 - The structure of ethylene diamine is illustrated...Ch. 16 - Decide whether each of the following substances...Ch. 16 - Decide whether each of the following substances...Ch. 16 - Carbon monoxide forms complexes with low-valent...Ch. 16 - Trimethylamine, (CH3)3N, is a common reagent. It...Ch. 16 - About this time, you may be wishing you had an...Ch. 16 - Consider the following ions: NH4+, CO32, Br, S2,...Ch. 16 - A 2.50 g sample of a solid that could be Ba(OH)2...Ch. 16 - In a particular solution, acetic acid is 11%...Ch. 16 - Hydrogen, H2S, and sodium acetate, NaCH3CO2 are...Ch. 16 - For each of the following reactions predict...Ch. 16 - A monoprotic acid HX has Ka = 1.3 103. Calculate...Ch. 16 - Arrange the following 0.10M solutions in order of...Ch. 16 - m-Nitrophenol, a weak acid, can be used as a pH...Ch. 16 - The butylammonium ion, C4H9NH3+, has a Ka of 2.3 ...Ch. 16 - The local anaesthetic novocaine is the hydrogen...Ch. 16 - Pyridine is weak organic base and readily forms a...Ch. 16 - The base ethylamine (CH3CH2NH2) has a Kb of. A...Ch. 16 - Chloroacetic acid, ClCH2CO2H, is a moderately weak...Ch. 16 - Saccharin (HC7H4NO3S) is a weak acid with pKa =...Ch. 16 - Given the following solutions: (a) 0.1 M NH3 (b)...Ch. 16 - For each of the following salts, predict whether a...Ch. 16 - Nicotine, C10H14N2, has two basic nitrogen atoms...Ch. 16 - Prob. 101GQCh. 16 - The equilibrium constant for the reaction of...Ch. 16 - The equilibrium constant for the reaction of...Ch. 16 - Calculate the pH of the solution that results from...Ch. 16 - To what volume should 1.00 102 mL of any weak...Ch. 16 - The hydrogen phthalate ion, C8HsO4, is a weak acid...Ch. 16 - Prob. 107GQCh. 16 - Prob. 108GQCh. 16 - Prob. 109ILCh. 16 - Prob. 110ILCh. 16 - Prob. 111ILCh. 16 - A hydrogen atom in the organic base pyridine,...Ch. 16 - Nicotinic acid, C6H5NO2, is found in minute...Ch. 16 - Prob. 114ILCh. 16 - Sulfanilic acid, which is used in making dyes, is...Ch. 16 - Amino acids are an important group of compounds....Ch. 16 - How can water be both a Brnsied base and a Lewis...Ch. 16 - The nickel(II) ion exists as [Ni(H2O)4]2+ in...Ch. 16 - The halogens form three stable, weak acids, HOX....Ch. 16 - The acidity of the oxoacids was described in...Ch. 16 - Perchloric acid behaves as an acid, even when it...Ch. 16 - You purchase a bottle of water. On checking its...Ch. 16 - Prob. 123SCQCh. 16 - Prob. 124SCQCh. 16 - Prob. 125SCQCh. 16 - Consider a salt of a weak base and a weak acid...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Table 13-4 lists the stepwise Ka values for some polyprotic acids. What is the difference between a monoprotic acid, a diprotic acid, and a triprotic acid? Most polyprotic acids are weak acids; the major exception is H2SO4. To solve for the pH of a solution of H2SO4, you must generally solve a strong acid problem as well as a weak acid problem. Explain. Write out the reactions that refer to Ka1 and Ka2 for H2SO4. For H3PO4, Ka1 = 7.5 103, Ka2 = 6.2 108, and Ka3= 4.8 1013. Write out the reactions that refer to the Ka1, Ka2and Ka3equilibrium constants. What are the three acids in a solution of H3PO4? Which acid is strongest? What are the three conjugate bases in a solution of H3PO4? Which conjugate base is strongest? Summarize the strategy for calculating the pH of a polyprotic acid in water.arrow_forwardThe pigment cyanidin aglycone is one of the anthocyanin molecules that gives red cabbage (Brassica oleracea var. capitata f. rubra) its characteristic red coloration. Many chemistry students have used this red cabbage indicator to study acid-base chemistry. Estimate tire pH range at which cyanidin agly-cone shows a color change. Anth-H(aq) Anth(aq) + H+ (aq) Ka = 1.3 107arrow_forwardEstimate the pH that results when the following two solutions are mixed. a) 50 mL of 0.3 M CH3COOH and 50 mL of 0.4 M KOH b) 100 mL of 0.3 M CH3COOH and 50 mL of 0.4 M NaOH c) 150 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2 d) 200 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2arrow_forward
- Explain how the definition of a Lewis acid differs from the definition of a Bronsted-Lowry acid.arrow_forwardFor conjugate acidbase pairs, how are Ka and Kb related? Consider the reaction of acetic acid in water CH3CO2H(aq)+H2O(l)CH3CO2(aq)+H3O+(aq) where Ka = 1.8 105 a. Which two bases are competing for the proton? b. Which is the stronger base? c. In light of your answer to part b. why do we classify the acetate ion (CH3CO2) as a weak base? Use an appropriate reaction to justify your answer. In general, as base strength increases, conjugate acid strength decreases. Explain why the conjugate acid of the weak base NH3 is a weak acid. To summarize, the conjugate base of a weak acid is a weak base and the conjugate acid of a weak base is a weak acid (weak gives you weak). Assuming Ka for a monoprotic strong acid is 1 106, calculate Kb for the conjugate base of this strong acid. Why do conjugate bases of strong acids have no basic properties in water? List the conjugate bases of the six common strong acids. To tie it all together, some instructors have students think of Li+, K+, Rb+, Cs+, Ca2+, Sr2+, and Ba2+ as the conjugate acids of the strong bases LiOH, KOH. RbOH, CsOH, Ca(OH)2, Sr(OH)2, and Ba(OH)2. Although not technically correct, the conjugate acid strength of these cations is similar to the conjugate base strength of the strong acids. That is, these cations have no acidic properties in water; similarly, the conjugate bases of strong acids have no basic properties (strong gives you worthless). Fill in the blanks with the correct response. The conjugate base of a weak acid is a_____base. The conjugate acid of a weak base is a_____acid. The conjugate base of a strong acid is a_____base. The conjugate acid of a strong base is a_____ acid. (Hint: Weak gives you weak and strong gives you worthless.)arrow_forwardAcids You make a solution by dissolving 0.0010 mol of HCl in enough water to make 1.0 L of solution. a Write the chemical equation for the reaction of HCl(aq) and water. b Without performing calculations, give a rough estimate of the pH of the HCl solution. Justify your answer. c Calculate the H3O+ concentration and the pH of the solution. d Is there any concentration of the base OH present in this solution of HCl(aq)? If so, where did it come from? e If you increase the OH concentration of the solution by adding NaOH, does the H3O+ concentration change? If you think it does, explain why this change occurs and whether the H3O+ concentration increases or decreases. f If you were to measure the pH of 10 drops of the original HCl solution, would you expect it to be different from the pH of the entire sample? Explain. g Explain how two different volumes of your original HCl solution can have the same pH yet contain different moles of H3O+. h If 1.0 L of pure water were added to the HCl solution, would this have any impact on the pH? Explain.arrow_forward
- Complete each of these reactions by filling in the blanks. Predict whether each reaction is product-favored or reactant-favored, and explain your reasoning. (a) _________ (aq) + Br(aq) NH3(aq) + HBr(aq) (b) CH3COOH(aq) + CN(aq) ________ (aq) + HCN(aq) (c) ________ (aq)+H2O () NH3(aq) + OH(aq)arrow_forwardAcrylic acid is used in the polymer industry in the production of acrylates. Its K, is 5.6 X 10“’. What is the pH of a 0.11 M solution of acrylic acid, CH2CHCOOH?arrow_forward(a) Using the expression Ka=[H+][A−]/[HA], explain how to determine which solution has the lower pH, 0.10MHF(aq) or 0.10MHC2H3O2(aq). Do not perform any numerical calculations. (b) Which solution has a higher percent ionization of the acid, a 0.10M solution of HC2H3O2(aq) or a 0.010M solution of HC2H3O2(aq) ? Justify your answer including the calculation of percent ionization for each solution.arrow_forward
- Formic acid, HCOOH, is the simplest of the carboxylic acids and occurs naturally, most notably in some ants. If the formate (HCOO–) concentration is 0.100 M, determine the formic acid (HCOOH) concentration required to buffer a solution at pH = 3.35 HCOOH(aq) ↔ HCOO–(aq) + H+(aq) Ka = 1.80 × 10-4 i) Calculate the pKa of the acid and provide your final answer with 3 decimal places ii) Write the main equation that you will use to help you calculate the formic acid concentration iii) Calculate the formic acid concentration required to buffer the solution at pH = 3.35 and provide your final answer with 3 decimal placesarrow_forwardA 0.018 M solution of salicylic acid, HOC6H4CO2H, has the same pH as 0.0038 M HNO3solution. (a) Write an equation for the ionization of salicylic acid in aqueous solution. (Assume only the –CO2H portion of the molecule ionizes.) (b) What is the pH of solution containing 0.018 M salicylic acid? (c) Calculate the Ka of salicylic acid.arrow_forwardPropanoic acid, CH₂CH₂COOH, is a weak monoprotic acid that is used to inhibit mould formation in bread. A student prepared a 0.10 mol/L solution of propanoic acid and found that the pH was 2.96. What is the acid dissociation constant for propanoic acid? [Hint: Setup an I.C.E. table] CH3CH₂COOH (aq) Ka for propanoic acid is: ←CH3CH₂COO (aq) + H (aq)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Ocean Chemistry; Author: Beverly Owens;https://www.youtube.com/watch?v=IDQzklIr57Q;License: Standard YouTube License, CC-BY