Problems with two constraints Given a differentiable function w = f(x; y, z), the goal is to find its maximum and minimum values subject to the constraints g(x, y, z) = 0 and h(x, y, z) = 0, where g and h are also differentiable.
a. Imagine a level surface of the function f and the constraint surfaces g(x, y, z) = 0 and h(x, y, z) = 0. Note that g and h intersect (in general) in a curve C on which maximum and minimum values of f must be found. Explain why ▿g and ▿h are orthogonal to their respective surfaces.
b. Explain why ▿f lies in the plane formed by ▿g and ▿h at a point of C where f has a maximum or minimum value.
c. Explain why part (b) implies that ▿f = λ▿g + μ▿h at a point of C where f has a maximum or minimum value, where λ and μ. (the Lagrange multipliers) are real numbers.
d. Conclude from part (c) that the equations that must be solved for maximum or minimum values of f subject to two constraints are ▿f = λ▿g + μ▿h, g(x, y, z) = 0 and h(x, y, z) = 0.
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
CALCULUS: EARLY TRANSCENDENTALS (LCPO)
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
Elementary Statistics: Picturing the World (7th Edition)
A First Course in Probability (10th Edition)
Basic Business Statistics, Student Value Edition
- 2. (5 points) Let f(x) = = - - - x² − 3x+7. Find the local minimum and maximum point(s) of f(x), and write them in the form (a, b), specifying whether each point is a minimum or maximum. Coordinates should be kept in fractions. Additionally, provide in your answer if f(x) has an absolute minimum or maximum over its entire domain with their corresponding values. Otherwise, state that there is no absolute maximum or minimum. As a reminder, ∞ and -∞ are not considered absolute maxima and minima respectively.arrow_forwardLet h(x, y, z) = — In (x) — z y7-4z - y4 + 3x²z — e²xy ln(z) + 10y²z. (a) Holding all other variables constant, take the partial derivative of h(x, y, z) with respect to x, 2 h(x, y, z). მ (b) Holding all other variables constant, take the partial derivative of h(x, y, z) with respect to y, 2 h(x, y, z).arrow_forwardmath help plzarrow_forward
- 4. Evaluate the following integrals. Show your work. a) -x b) f₁²x²/2 + x² dx c) fe³xdx d) [2 cos(5x) dx e) √ 35x6 3+5x7 dx 3 g) reve √ dt h) fx (x-5) 10 dx dt 1+12arrow_forwardI just need help with evaluating these limits.arrow_forward3. Differentiate the following functions. Show your work where applicable. a) y = e³x b) f(x)=2 cos(5x) c) y = 1 - 2 d) y = In|secx| e) f(t) = t² e√t f) f(x) = 1+x x sin x 3arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage