Proof of Limit Law 3 Use the formal definition of a limit to prove that lim ( x , y ) → ( a , b ) c f ( x , y ) = c lim ( x , y ) → ( a , b ) f ( x , y ) .
Proof of Limit Law 3 Use the formal definition of a limit to prove that lim ( x , y ) → ( a , b ) c f ( x , y ) = c lim ( x , y ) → ( a , b ) f ( x , y ) .
Solution Summary: The author explains how to prove the limits of a function of two variables with the help of the definition of limit.
Proof of Limit Law 3 Use the formal definition of a limit to prove that
lim
(
x
,
y
)
→
(
a
,
b
)
c
f
(
x
,
y
)
=
c
lim
(
x
,
y
)
→
(
a
,
b
)
f
(
x
,
y
)
.
Is the function f(x) continuous at x = 1?
(z)
6
5
4
3.
2
1
0
-10
-9
-7
-5
-2
-1 0
1
2
3
4
5
6
7
8
9
10
-1
-2
-3
-4
-5
-6
-7
Select the correct answer below:
○ The function f(x) is continuous at x = 1.
○ The right limit does not equal the left limit. Therefore, the function is not continuous.
○ The function f(x) is discontinuous at x = 1.
○ We cannot tell if the function is continuous or discontinuous.
Is the function f(x) shown in the graph below continuous at x = −5?
f(x)
7
6
5
4
2
1
0
-10
-9
-8 -7
-6
-5
-4
-3
-2
-1 0
1
2
3
4
5
6 7 8 9
10
-1
-2
-3
-4
-5
-6
-7
Select the correct answer below:
The function f(x) is continuous.
○ The right limit exists. Therefore, the function is continuous.
The left limit exists. Therefore, the function is continuous.
The function f(x) is discontinuous.
○ We cannot tell if the function is continuous or discontinuous.
4. Evaluate the following integrals. Show your work.
a)
-x
b) f₁²x²/2 + x² dx
c) fe³xdx
d) [2 cos(5x) dx
e) √
35x6
3+5x7
dx
3
g) reve
√ dt
h) fx (x-5) 10 dx
dt
1+12
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.